
Synchronization review

Libraries for User Apps

Pthread and other libraries

In System Programming and OOP
courses, we have seen that there
are libraries that allow us to write
multithreaded programs.

Pthread library (Posix thread library)
is such an example that provides an
API for multithreaded user
programs. In the pthread library, we
have seen two different
synchronization tools: mutex and
condition variables.

Mutexes

//m1 is a mutex variable

mutex_lock(m1);//acquire lock

critical_section

mutex_unlock(m1); //release lock

● You can consider lock as “a mic among participants that controls who has
the right to speak”,

○ i.e whoever has the mic (m1) has the right to speak (in our case do ops on the memory shared
among the participants).

Condition Variables
//two threads: e.g. producer/consumer

//Condition variables: c1 is for one condition, c2 is for another condition

//Locks: m1 to control the access to the critical section.

//1st thread

mutex_lock(m1);

/*critical section entry*/

while(need_to_wait_1){

cond_wait(c1, m1);

}

/*critical section exit*/

cond_signal(c2) //or broadcast

mutex_unlock(m1);

// 2nd thread

mutex_lock(m1);

/*critical section entry*/

while(need_to_wait_2){

 cond_wait(c2, m1);

};

/*critical section exit*/

cond_signal(c1) //or broadcast

mutex_unlock(m1);

Semaphores

sem_t s;

sem_init(&s, 0, 10);

//a thread that wants to occupy a chair

sem_wait(&s); //down the value of s by 1

//After done with the chair

sem_post(&s); //up the value of s by 1

● If the return value of sem_wait is negative the thread waits as done in the mutex locks.
○ This happens when the value of s before sem_wait is 0.

● sem_wait and sem_post can be called from different processes/threads.

In Linux kernel

Pthread API is implemented by using NPTL
(Native POSIX Thread Library - Wikipedia). It
uses the system calls such as clone and futex,
and atomic operations to create a library in
glibc (The GNU C Library) (see
pthread_create.c source code
[glibc/nptl/pthread_create.c] - Codebrowser).

There are also alternative/different pthread
implementations for Linux.

In the kernel space, similarly to processes, you
can also spawn threads by using kernel
threads(kthreads). There is also similar lock
mechanism you can use(see locking — The
Linux Kernel documentation)

https://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
https://www.gnu.org/software/libc/
https://codebrowser.dev/glibc/glibc/nptl/pthread_create.c.html
https://codebrowser.dev/glibc/glibc/nptl/pthread_create.c.html
https://docs.kernel.org/locking/index.html
https://docs.kernel.org/locking/index.html

Lock “Free”
Multithreading:

Atomic operations

Read-modify-write (RMW) atomic
instructions

Memory barriers (see memory-barriers.txt)

In Linux kernel (mb(), smp_mb(), etc.),

assembly instruction asm volatile
("mfence" : : : "memory")

C11 atomic library, Linux system calls

RCU

Non-blocking synchronization

https://www.kernel.org/doc/Documentation/memory-barriers.txt

Acquire/release semantics

Passing information reliably between threads about a variable.

‒ Ideal in producer/consumer type situations (pairing!!).

‒ After an ACQUIRE on a given variable, all memory accesses preceding any prior
RELEASE on that same variable are guaranteed to be visible.

‒ All accesses of all previous critical sections for that variable are guaranteed to
have completed.

‒ C++11's memory_order_acquire, memory_order_release and
memory_order_relaxed.

https://elinux.org/images/a/ab/Bueso.pdf

https://elinux.org/images/a/ab/Bueso.pdf

Spinlocks with release/acquire semantics and atomic ops spinlocks

https://elinux.org/images/a/ab/Bueso.pdf

https://elinux.org/images/a/ab/Bueso.pdf

http://www.scs.stanford.edu/21wi-cs140/notes/

http://www.scs.stanford.edu/21wi-cs140/notes/

http://www.scs.stanford.edu/21wi-cs140/notes/

http://www.scs.stanford.edu/21wi-cs140/notes/

http://www.scs.stanford.edu/21wi-cs140/notes/

http://www.scs.stanford.edu/21wi-cs140/notes/

http://www.scs.stanford.edu/21wi-cs140/notes/

http://www.scs.stanford.edu/21wi-cs140/notes/

http://www.scs.stanford.edu/21wi-cs140/notes/

http://www.scs.stanford.edu/21wi-cs140/notes/

http://www.scs.stanford.edu/21wi-cs140/notes/

http://www.scs.stanford.edu/21wi-cs140/notes/

http://www.scs.stanford.edu/21wi-cs140/notes/

http://www.scs.stanford.edu/21wi-cs140/notes/

http://www.scs.stanford.edu/21wi-cs140/notes/

http://www.scs.stanford.edu/21wi-cs140/notes/

Implementation
of Locks

In kernel space: implementation by
disabling and enabling interrupts

In user space: Atomic operations
and futex system call

Lec 8.209/20/2022 Kubiatowicz CS162 © UCB Fall 2022

• How can we build multi-instruction atomic operations?
– Recall: dispatcher gets control in two ways.

» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU

– On a uniprocessor, can avoid context-switching by:
» Avoiding internal events (although virtual memory tricky)
» Preventing external events by disabling interrupts

• Consequently, naïve Implementation of locks:
LockAcquire { disable interrupts; }
LockRelease { enable interrupts; }

• Problems with this approach:
– Can’t let user do this! Consider following:

LockAcquire();
While(TRUE) {;}

– Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long

– What happens with I/O or other important events?
» “Reactor about to meltdown. Help?”

Recall: Naïve use of Interrupt Enable/Disable

Lec 8.219/20/2022 Kubiatowicz CS162 © UCB Fall 2022

Recall: Better Implementation of Locks by Disabling Interrupts

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

• Key idea: maintain a lock variable and impose mutual exclusion
only during operations on that variable

• Really only works in kernel – why?

Lec 8.229/20/2022 Kubiatowicz CS162 © UCB Fall 2022

New Lock Implementation: Discussion
• Why do we need to disable interrupts at all?

– Avoid interruption between checking and setting lock value.
– Prevent switching to other thread that might be trying to acquire lock!
– Otherwise two threads could think that they both have lock!

• Note: unlike previous solution, this “meta-”critical section is very short
– User of lock can take as long as they like in their own critical section: doesn’t

impact global machine behavior
– Critical interrupts taken in time!

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait
queue;

Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

“Meta-”
Critical
Section

Lec 8.239/20/2022 Kubiatowicz CS162 © UCB Fall 2022

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Lec 8.249/20/2022 Kubiatowicz CS162 © UCB Fall 2022

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

Lec 8.259/20/2022 Kubiatowicz CS162 © UCB Fall 2022

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

Lec 8.269/20/2022 Kubiatowicz CS162 © UCB Fall 2022

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

Lec 8.279/20/2022 Kubiatowicz CS162 © UCB Fall 2022

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue?
– Release puts the thread on the ready queue, but the thread still

thinks it needs to go to sleep
– Misses wakeup and still holds lock (deadlock!)

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

Lec 8.289/20/2022 Kubiatowicz CS162 © UCB Fall 2022

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue?
– Release puts the thread on the ready queue, but the thread still

thinks it needs to go to sleep
– Misses wakeup and still holds lock (deadlock!)

• Want to put it after sleep(). But – how?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait
queue;

Go to sleep();
} else {

value = BUSY;
}
enable interrupts;

}

Enable Position

Lec 8.299/20/2022 Kubiatowicz CS162 © UCB Fall 2022

Lec 8.309/20/2022 Kubiatowicz CS162 © UCB Fall 2022

INIT
int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 }
 enable interrupts;
}

In-Kernel Lock: Simulation

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Value: 0 waiter
s

owne
r

Thread A Thread
B

Runnin
g

READY
Read
y

Lec 8.319/20/2022 Kubiatowicz CS162 © UCB Fall 2022

INIT
int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 }
 enable interrupts;
}

In-Kernel Lock: Simulation

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Thread A Thread
B

READY
Runnin
g

Value: 1 waiter
s

owne
r Read

y

Lec 8.329/20/2022 Kubiatowicz CS162 © UCB Fall 2022

INIT
int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 }
 enable interrupts;
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Thread A Thread
B

In-Kernel Lock: Simulation
READY

Runnin
g

Runnin
g

Value: 1 waiter
s

owne
r Read

y
Read
y

Lec 8.339/20/2022 Kubiatowicz CS162 © UCB Fall 2022

INIT
int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Thread A Thread
B

In-Kernel Lock: Simulation
READY

Runnin
g

Runnin
g

Value: 1 waiter
s

owne
r Waitin

g
Read
y

Lec 8.349/20/2022 Kubiatowicz CS162 © UCB Fall 2022

INIT
int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Thread A Thread
B

In-Kernel Lock: Simulation
READY

Runnin
g

Value: 1 waiter
s

owne
r Waitin

g
Read
y

Lec 8.359/20/2022 Kubiatowicz CS162 © UCB Fall 2022

INIT
int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 }
 enable interrupts;
}

Runnin
g

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Thread A Thread
B

In-Kernel Lock: Simulation
READY

Runnin
g

Value: 1 waiter
s

owne
rRead

y
Read
y

User space
implementation

Lec 8.379/20/2022 Kubiatowicz CS162 © UCB Fall 2022

Atomic Read-Modify-Write Instructions
• Problems with previous solution:

– Can’t give lock implementation to users
– Doesn’t work well on multiprocessor

» Disabling interrupts on all processors requires messages and would be very time
consuming

• Alternative: atomic instruction sequences
– These instructions read a value and write a new value atomically
– Hardware is responsible for implementing this correctly

» on both uniprocessors (not too hard)
» and multiprocessors (requires help from cache coherence protocol)

– Unlike disabling interrupts, can be used on both uniprocessors and multiprocessors

Lec 8.389/20/2022 Kubiatowicz CS162 © UCB Fall 2022

Examples of Read-Modify-Write
• test&set (&address) { /* most architectures */

 result = M[address]; // return result from “address” and
 M[address] = 1; // set value at “address” to 1
 return result;
}

• swap (&address, register) { /* x86 */
 temp = M[address]; // swap register’s value to
 M[address] = register; // value at “address”
 register = temp;
}

• compare&swap (&address, reg1, reg2) { /* x86 (returns old value), 68000 */
 if (reg1 == M[address]) { // If memory still == reg1,
 M[address] = reg2; // then put reg2 => memory
 return success;
 } else { // Otherwise do not change memory
 return failure;
 }
}

• load-linked&store-conditional(&address) { /* R4000, alpha */
 loop:

ll r1, M[address];
movi r2, 1; // Can do arbitrary computation
sc r2, M[address];
beqz r2, loop;

}

Lec 8.399/20/2022 Kubiatowicz CS162 © UCB Fall 2022

• compare&swap (&address, reg1, reg2) { /* x86, 68000 */
if (reg1 == M[address]) {

M[address] = reg2;
return success;

} else {
return failure;

}
}

Here is an atomic add to linkedlist function:
addToQueue(&object) {

do { // repeat until no conflict
ld r1, M[root] // Get ptr to current head
st r1, M[object] // Save link in new object

} until (compare&swap(&root,r1,object));
}

Using of Compare&Swap for queues

root next next

next
New
Objec

t

Lec 8.409/20/2022 Kubiatowicz CS162 © UCB Fall 2022

Implementing Locks with test&set
• Simple lock that doesn’t require entry into the kernel:

// (Free) Can access this memory location from user space!
int mylock = 0; // Interface: acquire(&mylock);
 // release(&mylock);
acquire(int *thelock) {

while (test&set(thelock)); // Atomic operation!
}
release(int *thelock) {

*thelock = 0; // Atomic operation!
}

• Simple explanation:
– If lock is free, test&set reads 0 and sets lock=1, so lock is now busy.

It returns 0 so while exits.
– If lock is busy, test&set reads 1 and sets lock=1 (no change)

It returns 1, so while loop continues.
– When we set thelock = 0, someone else can get lock.

• Busy-Waiting: thread consumes cycles while waiting
– For multiprocessors: every test&set() is a write, which makes value ping-pong around in cache

(using lots of network BW)

Lec 8.419/20/2022 Kubiatowicz CS162 © UCB Fall 2022

Problem: Busy-Waiting for Lock
• Positives for this solution

– Machine can receive interrupts
– User code can use this lock
– Works on a multiprocessor

• Negatives
– This is very inefficient as thread will consume cycles waiting
– Waiting thread may take cycles away from thread holding lock (no one wins!)
– Priority Inversion: If busy-waiting thread has higher priority than thread holding lock ⇒

no progress!
• Priority Inversion problem with original Martian rover
• For higher-level synchronization primitives (e.g. semaphores or monitors), waiting

thread may wait for an arbitrary long time!
– Thus even if busy-waiting was OK for locks, definitely not ok for other primitives
– Homework/exam solutions should avoid busy-waiting!

Lec 8.429/20/2022 Kubiatowicz CS162 © UCB Fall 2022

User Space Lock implementation with Futex and atomic operations
• Three (3) states:

– UNLOCKED: No one has lock
– LOCKED: One thread has lock
– CONTESTED: Possibly more than

one (with someone sleeping)

• Lock grabbed cleanly by either
– compare_and_swap()

– First swap()
• No overhead if uncontested!
• Could build semaphores in a similar way!

typedef enum { UNLOCKED,LOCKED,CONTESTED } Lock;
Lock mylock = UNLOCKED; // Interface:
acquire(&mylock);
 //
release(&mylock);

acquire(Lock *thelock) {
// If unlocked, grab lock!
if (compare&swap(thelock,UNLOCKED,LOCKED))

return;

// Keep trying to grab lock, sleep in futex
while (swap(mylock,CONTESTED) != UNLOCKED))

// Sleep unless someone releases hear!
futex(thelock, FUTEX_WAIT, CONTESTED);

}
release(Lock *thelock) {

// If someone sleeping,
if (swap(thelock,UNLOCKED) == CONTESTED)

futex(thelock,FUTEX_WAKE,1);
}

no one has to be woken up, and so no
syscalls at all.

● See also futex_demo.c in futex(2) - Linux manual page

https://man7.org/linux/man-pages/man2/futex.2.html#:~:text=Program%20source%0A%0A%20%20%20%20%20%20%20/*-,futex_demo.c,-Usage%3A%20futex_demo%20%5Bnloops
https://man7.org/linux/man-pages/man2/futex.2.html

