
Synchronization 
II

● Lock implementation
○ interrupts
○ spinlock

■ yield()
● queues

■ futex
● cache coherency
● Lock Free Data Structures

○ Lockless patterns: more read-modify-write 
operations [LWN.net] 

○ C11 Atomic operations library
■  Atomic operations library 
■ memory_order - cppreference.com
■ slides: Memory barriers in C 
■ linux kernel memory barriers: Linux 

kernel documentation on memory 
barriers An introduction to lockless 
algorithms [LWN.net] 
https://www.scs.stanford.edu/23wi-cs21
2/sched/readings/why-memory-barriers.
pdf  

● RCU
● Deadlock
● Transactions

https://lwn.net/Articles/849237/
https://lwn.net/Articles/849237/
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic/memory_order
https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://lwn.net/Articles/844224/
https://lwn.net/Articles/844224/
https://www.scs.stanford.edu/23wi-cs212/sched/readings/why-memory-barriers.pdf
https://www.scs.stanford.edu/23wi-cs212/sched/readings/why-memory-barriers.pdf
https://www.scs.stanford.edu/23wi-cs212/sched/readings/why-memory-barriers.pdf


Program A: Can both critical 
sections run?
int flag1 = 0, flag2 = 0;
void p1(void *ignored) {
   flag1 = 1;
   if (!flag2) {
       critical_section_1();
   }
}
void p2(void *ignored) {
   flag2 = 1;
   if (!flag1) {
       critical_section_2();
   }
}
int main() {
   tid id = thread_create(p1, NULL);
   p2();
   thread_join(id);
}

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf 

● thread executions are interleaved!
● non-preemptive threads

○ 1 thread executes exclusively
● preemptive threads

○ may switch to another thread 
between instructions

● Multiple CPU is inherently 
preemptive

Reminder

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf


Program B: 
Can use() be called with value 0: 

use(0)?

int data = 0;

int ready = 0;

void p1(void *ignored) {

   data = 2000;

   ready = 1;

}

void p2(void *ignored) {

   while (!ready)

       ;

   use(data);

}

int main() { ... }

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf 

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf


Program C: If p1–3 run concurrently, can use be called with value 0?

int a = 0;

int b = 0;

void p1(void *ignored) { a = 1; }

void p2(void *ignored) {

   if (a == 1) b = 1;

}

void p3(void *ignored) {

   if (b == 1) use(a);

}

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf 

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf


Answers

We do not know!

● It depends on what machine you use 
● If a system provides sequential consistency, 

○ then answers all No 

● But not all hardware provides sequential consistency

Sequential consistency(SC): The result of execution is as if all operations were 
executed in some sequential order, and the operations of each processor occurred in 
the order specified by the program. – Lamport

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf 

Why doesn’t all hardware support sequential consistency?
➔ many of the compiler and processor optimizations 

would be illegal!

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf


SC prevents hardware optimizations

● Complicates write buffers
○ E.g., read flag(n) before flag(3 − n) written through in Program A

● Can’t re-order overlapping write operations
○ Concurrent writes to different memory modules

○ Coalescing writes to same cache line

● Complicates non-blocking reads
○ E.g., speculatively prefetch data in Program B

● Makes cache coherence more expensive
○ Must delay write completion until invalidation/update (Program B)

○ Can’t allow overlapping updates if no globally visible order (Program C)

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf 

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf


SC prevents hardware optimizations

● Code motion
● Caching value in register

○ Collapse multiple loads/stores of same address into one operation

● Common subexpression elimination
○ Could cause memory location to be read fewer times

● Loop blocking
○ Re-arrange loops for better cache performance

● Software pipelining
○ Move instructions across iterations of a loop to overlap instruction latency with 

branch cost

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf 

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf


x86 consistency [intel 3a, §8.2]
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: 
System Programming Guide, Part 1 
● x86 supports multiple consistency/caching models

○ Memory Type Range Registers (MTRR) specify consistency for ranges of physical memory 
(e.g., frame buffer)

○ Page Attribute Table (PAT) allows control for each 4K page
● Choices include:

○ WB: Write-back caching (the default)
○ WT: Write-through caching (all writes go to memory)
○ UC: Uncacheable (for device memory)
○ WC: Write-combining – weak consistency & no caching (used for frame buffers, when 

sending a lot of data to GPU)
● Some instructions have weaker consistency

○ String instructions (written cache-lines can be re-ordered)
○ Special “non-temporal” store instructions (movnt∗) that bypass cache and can be re-ordered 

with respect to other writes

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf 

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf


● Old x86s (e.g, 486, Pentium 1) had almost SC
○ Exception: A read could finish before an earlier write to a different location

○ Which of Programs A, B, C might be affected?
■ just A

● Newer x86s also let a CPU read its own writes early

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf 

● E.g., both p1 and p2 can return 2:
● Older CPUs would wait at “f = ...” until store complete

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf


Assuming sequential 
consistency



Peterson’s solution

// P0

while (true){

   // wants to enter

   flag[0] = true;

   turn = 1;

   while (flag[1] && turn == 1){

       ;

   }

   /* critical section */

   flag[0] = false;

   /* remainder section */

}

// P1

while (true){

   // wants to enter

   flag[1] = true;

   turn = 0;

   while (flag[0] && turn == 0) {

       ;

   }

   /* critical section */

   flag[1] = false;

   /* remainder section */

}

int flag[2] = {false, false}; /*flag[i] indicates that Pi wants to enter critical section (it’s 

ready)*/

int turn = 0; /*indicates which process has the priority (lock) to enter in its CS*/

This will not work in modern architectures:
For multithreaded programs, reordering of the statements cause 
inconsistency!  



example 

https://preshing.com/20120515/memory-reordering-caught-in-the-act/

https://preshing.com/20120515/memory-reordering-caught-in-the-act/


Peterson expensive, only works for 2 processes

- Can generalize to n, but for some fixed n

Must adapt to machine memory model if not SC

- If you need machine-specific barriers anyway, might as well take advantage 
of other instructions helpful for synchronization

➔ Want to insulate programmer from implementing synchronization 
primitives
◆ thread library packages



Libraries for User Apps 

Pthread and other libraries

In System Programming and OOP courses, we 
have seen that there are libraries that allow us to 
write multithreaded programs.

Thread packages typically provide mutexes:

void mutex_init (mutex_t *m, ...);

void mutex_lock (mutex_t *m);

int mutex_trylock (mutex_t *m);

void mutex_unlock (mutex_t *m);
● Only one thread acquires m at a time, 

others wait

Pthread library (Posix thread library) is such an 
example that provides an API for multithreaded 
user programs. In the pthread library, we have 
seen two different synchronization tools: mutex 
and condition variables.



Mutexes

//m1 is a mutex variable

mutex_lock(m1);//acquire lock

critical_section

mutex_unlock(m1); //release lock

● You can consider lock as “a mic among participants that controls who has 
the right to speak”,

○ i.e whoever has the mic (m1) has the right to speak (in our case do ops on the memory shared 
among the participants).



Monitors(Monitors = cond var + mutex)
//two threads: e.g. producer/consumer

//Condition variables: c1 is for one condition, c2 is for another condition

//Locks: m1 to control the access to the critical section.

//1st thread

mutex_lock(m1);

/*critical section entry*/

while(need_to_wait_1 ){

cond_wait(c1, m1);

}

/*critical section exit*/

cond_signal(c2) //or broadcast 

mutex_unlock(m1);

// 2nd thread

mutex_lock(m1);

/*critical section entry*/

while(need_to_wait_2){

    cond_wait(c2, m1);

};

/*critical section exit*/

cond_signal(c1) //or broadcast

mutex_unlock(m1);



Monitors = cond var + mutex
Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section
➔ Three Operations: Wait(), Signal(), and Broadcast()

● Monitors represent the logic of the program
○ Wait if necessary
○ Signal when change something so any waiting threads can proceed

//1st thread

mutex_lock(m1);

/*critical section entry*/

while(need_to_wait_1 ){

cond_wait(c1, m1);

}

/*critical section exit*/

cond_signal(c2) //or broadcast 

mutex_unlock(m1);

// 2nd thread

mutex_lock(m1);

/*critical section entry*/

while(need_to_wait_2){

    cond_wait(c2, m1);

};

/*critical section exit*/

cond_signal(c1) //or broadcast

mutex_unlock(m1);



Semaphores

sem_t s;

sem_init(&s, 0, 10);

//a thread that wants to occupy a chair

sem_wait(&s); //down the value of s by 1

//After done with the chair

sem_post(&s); //up the value of s by 1

● If the return value of sem_wait is negative the thread waits as done in the mutex locks.
○ This happens when the value of s before sem_wait is 0.

● sem_wait and sem_post can be called from different processes/threads.



In Linux kernel 

● Pthread API is implemented by using 
NPTL (Native POSIX Thread Library - 
Wikipedia ). 

○ It uses the system calls such as clone and 
futex, and atomic operations to create a 
library in glibc (The GNU C Library)  

○ (see pthread_create.c source code 
[glibc/nptl/pthread_create.c] - Codebrowser ). 

There are also alternative/different pthread 
implementations for Linux.

In the kernel space, 

● similarly to processes, you can also 
spawn threads by using kernel 
threads(kthreads). 

● There is also similar lock mechanism 
you can use(see locking — The Linux 
Kernel documentation)

https://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
https://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
https://www.gnu.org/software/libc/
https://codebrowser.dev/glibc/glibc/nptl/pthread_create.c.html
https://codebrowser.dev/glibc/glibc/nptl/pthread_create.c.html
https://docs.kernel.org/locking/index.html
https://docs.kernel.org/locking/index.html


Lock 
implementation

Goals:

● Correctness 
○ Mutual exclusion: only one thread in 

critical section at a time 
○ Progress (deadlock-free): if several 

simultaneous requests, must allow one to 
proceed 

○ Bounded wait (starvation-free): must 
eventually allow each waiting thread to 
enter 

● Fairness: each thread waits for same 
amount of time 

○ Also, threads acquire locks in the same 
order as requested 

● Performance: CPU time is used 
efficiently

both user/kernel need 
synchronization!



● Locks are variables in shared 
memory
○ Two main operations: acquire() 

and release()
○ Also called lock() and unlock()

● To check if locked, 
○ read variable and check value

● To acquire, 
○ write “locked” value to variable
○ Should only do this if already unlocked
○ If already locked, keep reading value until 

unlock observed

● To release, 
○ write “unlocked” value to variable



Implementing as a straightforward data structure?

typedef struct mutex {

   bool is_locked;        /* true if locked */

   thread_id_t owner;     /* thread holding lock, if locked */

   thread_list_t waiters; /* threads waiting for lock */

   lower_level_lock_t lk; /* Protect above fields */

};

★ Fine, so long as we avoid data races on the mutex itself
➔ Need lower-level lock lk for mutual exclusion 

◆ Internally, mutex_* functions bracket code with 

lock(&mutex->lk) . . . unlock(&mutex->lk) 

➔ Otherwise, data races! (E.g., two threads manipulating waiters

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf 

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf


How to implement  lower_level_lock_t lk;? 

● Could use Peterson’s 
algorithm, 
○ typically a bad idea 

■ too slow 
■ and don’t know 

maximum number of 
threads

Two approaches

1. Disable interrupts
a. works only in kernel

2. Spinlocks

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf 

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf


● How can we build multi-instruction 
atomic operations?
○ Recall: dispatcher gets control in two 

ways. 
■ Internal: Thread does something to 

relinquish the CPU
■ External: Interrupts cause dispatcher 

to take CPU
○ On a uniprocessor, can avoid 

context-switching by:
■ Avoiding internal events (although 

virtual memory tricky)
■ Preventing external events by 

disabling interrupts

Approach 1: Disable interrupts
Naïve use of Interrupt Enable/Disable

● Consequently, naïve Implementation of locks:

LockAcquire { 
 disable interrupts; 
}

LockRelease { 
  enable interrupts; 
}

● Problems with this approach:
○ Can’t let user do this! 

LockAcquire();
while(true) {;}

○ Real-Time system—no guarantees on timing! 
■ Critical Sections might be arbitrarily long

○ What happens with I/O or other important events?
■ “Reactor about to meltdown. Help?”

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf 

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf


Better Implementation of Locks by Disabling Interrupts

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

● Key idea: maintain a lock variable and impose mutual exclusion only during 
operations on that variable

● Really only works in kernel – why?

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf 

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf


Why do we need to disable interrupts at all?
● Avoid interruption between checking and setting lock value.  
● Prevent switching to other thread that might be trying to acquire lock!
● Otherwise two threads could think that they both have lock!

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

“Meta-”
Critical
Section

● Note: unlike previous solution, this “meta-”critical section is very short
○ User of lock can take as long as they like in their own critical section: doesn’t impact global 

machine behavior
○ Critical interrupts taken in time!

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf 

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf


What about re-enabling ints when going to sleep?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;

Go to sleep();

} else {

value = BUSY;
}
enable interrupts;

}

● Want to put it after sleep(). But – how?

● Before putting thread on 
the wait queue?
○ Release can check the 

queue and not wake up 
thread

● After putting the thread 
on the wait queue?
○ Release puts the thread on 

the ready queue, but the 
thread still thinks it needs to 
go to sleep

○ Misses wakeup and still 
holds lock (deadlock!)

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lecture
s/8.pdf 

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf
https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf


How to Re-enable After Sleep()?

In scheduler, since interrupts are disabled when you call sleep:

– Responsibility of the next thread to re-enable ints

– When the sleeping thread wakes up, returns to acquire and re-enables interrupts

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf 

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf


Problems with interrupt based locks

Can’t give lock implementation to users 

Doesn’t work well on multiprocessor 

● Disabling interrupts on all processors requires messages and would 
be very time consuming

But sometimes most efficient solution for uniprocessors

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf 

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf


for apps with n : 1 threads (1 kthread)

Cannot take advantage of 
multiprocessors 

But sometimes most efficient solution 
for uniprocessors

Typical setup: 

● periodic timer signal caught by thread scheduler
● Have per-thread “do not interrupt” (DNI) bit 

lock (lk): 

● sets thread’s DNI bit

If timer interrupt arrives

● Check interrupted thread’s DNI bit
● If DNI clear, 

○ preempt current thread
● If DNI set, 

○ set “interrupted” (I) bit 
○ & resume current thread 

unlock (lk): 

● clears DNI bit and checks (I) bit 
● If I bit is set, immediately yields the CPU

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf 

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf


Approach 2: Spinlocks

○ Idea is to implement something like this:

bool lock = false;  // shared variable

void acquire(bool *lock) {

   while (*lock) /* wait */

       ;

   *lock = true;

}

void release(bool *lock) { *lock = false; }

This does not work!
● Checking and writing of the lock value in acquire() need to happen atomically.



Spinlocks

Most CPUs support atomic read-[modify-]write
● Test and Set
● Fetch and Add
● Compare and Swap (CAS)
● Load Linked / Store Conditional

Hardware is responsible for implementing this correctly  

Example: int test_and_set (int *lockp);
● atomically sets *lockp = 1 
● and returns old value

Special instruction 
➔ no way to implement in portable C99
➔ C11 supports with explicit atomic_flag_test_and_set function
➔ C11 Atomic operations library 

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf 

https://en.cppreference.com/w/c/atomic
https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf


Synchronization on x86

x86 xchg instruction, exchanges reg with mem
_test_and_set : 

movl 4(% esp), % edx # % edx = lockp

movl $1, % eax # % eax = 1

xchgl % eax, (% edx) # swap(% eax, *lockp) 

ret

// Implementation in x86 :
int TAS(volatile int *addr, int newval) {
   int result = newval;
   asm volatile("lock; xchg %0, %1"
                : "+m"(*addr), "=r"(result)
                : "1"(newval)
                : "cc");
   return result;
}

CPU locks memory system around 
read and write 

● xchgl always acts like it has 
implicit lock prefix 

● Prevents other uses of the 
bus (e.g., DMA)

Usually runs at memory bus speed, 
not CPU speed 

● Much slower than cached 
read/buffered write

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf 
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recall: using in critical section problem

volatile int lock = 0;

void critical() {
    while (test_and_set(&lock) == 1);/*spinlock*/
    
    /* critical section */
   
    lock = 0;  /* release lock when finished CS*
}



Use spinlocks to implement mutex’s lower_level_lock_t

#define lock(lockp) while (test_and_set (lockp))
#define trylock(lockp) (test_and_set (lockp) == 0)
#define unlock(lockp) *lockp = 0

 Can you use spinlocks instead of mutexes?
➔ Wastes CPU, especially if thread holding lock not running
➔ Mutex functions have short C.S., less likely to be preempted
➔ On multiprocessor, sometimes good to spin for a bit, then yield

typedef struct mutex {

bool is_locked;

thread_id_t owner; 

thread_list_t waiters;

lower_level_lock_t lk;

};

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf 
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Problem: Busy-Waiting for Lock
● Positives for this solution

○ Machine can receive interrupts

○ User code can use this lock

○ Works on a multiprocessor

● Negatives
○ This is very inefficient as thread will consume cycles waiting

○ Waiting thread may take cycles away from thread holding lock (no one wins!)

○ Priority Inversion: If busy-waiting thread has higher priority than thread holding lock ⇒ no 
progress!

● Priority Inversion problem with original Martian rover 
● For higher-level synchronization primitives (e.g. semaphores or monitors), 

waiting thread may wait for an arbitrary long time!
○ Thus even if busy-waiting was OK for locks, definitely not ok for other primitives

○ Homework/exam solutions should avoid busy-waiting!

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf 

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf


Kernel Synchronization

 Old UNIX had 1 CPU, non-preemptive threads, no mutexes
- Interface designed for single CPU, so count++ etc. not data race

- . . .Unless memory shared with an interrupt handler
int x = splhigh (); /* bsd Disable interrupts, preempt_disable() in Linux */

/* touch data shared with interrupt handler ... */

splx (x); /* bsd Restore previous state, preempt_enable in Linux */

● Used arbitrary pointers like condition variables

int [t]sleep (void *ident, int priority, ...);

put thread to sleep; will wake up at priority (∼cond_wait)

int wakeup (void *ident);

wake up all threads sleeping on ident (∼cond_broadcast)

Should kernel use locks or disable interrupts?

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf 
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Kernel Locks

Nowadays, should design for multiprocessors

● Even if first version of OS is for uniprocessor
● Someday may want multiple CPUs and need preemptive threads
● That’s why Pintos uses sleeping locks (sleeping locks means mutexes, as 

opposed to spinlocks)

Multiprocessor performance needs fine-grained locks

● Want to be able to call into the kernel on multiple CPUs

If kernel has locks, should it ever disable interrupts?

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf 
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Kernel Locks

If kernel has locks, should it ever disable interrupts?

● Yes! Can’t sleep in interrupt handler, so can’t wait for lock 
● So even modern OSes have support for disabling interrupts 
● Often uses DNI trick when cheaper than masking interrupts in hardware



Improving 
spinlock 

performance Kernel support for userspace 
sleeping locks

Cache Coherence



Hardware

Higher-le
vel 
API

Programs

Recall: Where are we going with synchronization?

● We are going to implement various higher-level synchronization 
primitives using atomic operations
○ Everything is pretty painful if only atomic primitives are load and store

○ Need to provide primitives useful at user-level

Load/Store    Disable Ints   Test&Set   Compare&Swap

Locks   Semaphores   Monitors   Send/Receive

Shared Programs

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf 

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf


Evaluating our lock Implementation with TAS

typedef struct __lock_t {

   int flag;

} lock_t;

void init(lock_t *lock) { lock->flag = 0; }

void acquire(lock_t *lock) {

   while (test_and_set(&lock->flag, 1) == 1)

       ;  // spin-wait (do nothing)

}

void release(lock_t *lock) { lock->flag = 0; }

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf 

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf


Evaluating our lock Implementation with TAS

1) Mutual exclusion: only one thread in critical 
section at a time

2) Progress (deadlock-free): if several 
simultaneous requests,must allow one to 
proceed

3) Bounded wait: must eventually allow each 
waiting thread to enter

4) Fairness: threads acquire lock in the order 
of requesting

5) Performance: CPU time is used efficiently

3, 4, 5 may NOT be 
satisfied in practice!

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf 

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf


our spinlock is not fair!

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf 

● Busy-Waiting: thread consumes cycles while waiting
○ For multiprocessors: every test&set() is a write, which makes value ping-pong 

around in cache (using lots of network BW)

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf


Fairness and Bounded Wait

Use Ticket Locks

Idea: reserve each thread’s turn to use a 
lock. 

• Each thread spins until their turn.

Use new atomic primitive: fetch-and-add

// Semantic

int fetch_and_add(int *ptr) {

   int old = *ptr;

   *ptr = old + 1;

   return old;

}

// example implementation 

// GCC’s built-in atomic function

__sync_fetch_and_add(ptr, 1)

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf 

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf


ticket-lock implementation
typedef struct {

   int ticket;

   int turn;

} lock_t;

void lock_init(lock_t *lock) {

   lock->ticket = 0;

   lock->turn = 0;

}

void acquire(lock_t *lock) {

   int myturn = fetch_and_add(&lock->ticket);

   while (lock->turn != myturn)

       ;  // spin

}

void release(lock_t *lock) { 

lock->turn += 1; 

}

Busy-waiting(spinning) performance

Good when…

● many CPUs
● locks held a short time
● advantage: avoid context switch

Awful when…

● one CPU
● locks held a long time
● disadvantage: spinning is wasteful

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf 

https://en.wikipedia.org/wiki/Ticket_lock
https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf


CPU Scheduler Is Ignorant

busy-waiting (spinning) locks

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf 

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf


Ticket Lock with yield() (see Linus Torvalds comment)

typedef struct {

   int ticket;

   int turn;

} lock_t;

void acquire(lock_t *lock) {

   int myturn = fetch_and_add(&lock->ticket);

   while (lock->turn != myturn) sched_yield();

}

void release(lock_t *lock) { lock->turn += 1; }

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf 

https://www.realworldtech.com/forum/?threadid=189711&curpostid=189752
https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf


yielding instead of spinning
Wasted time 

●  Without yield: O(threads × time_slice) 
●  With yield: O(threads ×  context_switch_time) 

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf 

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf


Evaluating Ticket Lock

5) Performance: CPU time is used efficiently

➔ 5 (even with yielding, too much overhead)

So even with yield, spinning is slow with high thread contention 

Next improvement: instead of spinning, block and put thread on a wait queue

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf 

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf


Blocking Locks with queues

acquire() removes waiting threads from run queue using special system call

release() returns waiting threads to run queue using special system call

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf 

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf


Better Locks using test&set
● Can we build test&set locks without busy-waiting?

○ Mostly.  Idea: only busy-wait to atomically check lock value

release(int *thelock) {
// Short busy-wait time
while (test_and_set(guard));
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
*thelock = FREE;

}
guard = 0;

int guard = 0; // Global Variable!
int mylock = FREE; // Interface: acquire(&mylock);
                   //            release(&mylock);

acquire(int *thelock) {
// Short busy-wait time
while (test_and_set(guard));
if (*thelock == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;
// guard == 0 on wakeup!

} else {
*thelock = BUSY;
guard = 0;

}
}

● Note: sleep has to be sure to reset the guard variable
○ Why can’t we do it just before or just after the sleep?

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf 

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf


Kernel support for sleeping locks

Sleeping locks must interact with scheduler

- For processes or kernel threads, must go into kernel (expensive)

- Common case is you can acquire lock—how to optimize?

• Idea: never enter kernel for uncontested lock

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf 

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf


futex abstraction solves the problem 

- Ask kernel to sleep only if memory location hasn’t changed

• void futex (int *uaddr, FUTEX_WAIT, int val. . .);

- Go to sleep only if *uaddr == val

- Extra arguments allow timeouts, etc.

• void futex (int *uaddr, FUTEX_WAKE, int val. . .);

- Wake up at most val threads sleeping on uaddr

• uaddr is translated down to offset in VM object

- So works on memory mapped file at different virtual addresses in different processes

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf 

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf


Recap: Locks using interrupts

acquire(int *thelock) {
  // Short busy-wait time
  disable interrupts;
  if (*thelock == 1) {
    put thread on wait-queue;
    go to sleep() //?? 
  } else {
    *thelock = 1;
    enable interrupts;
  }
}

release(int *thelock) {
  // Short busy-wait time
  disable interrupts;
  if anyone on wait queue {
    take thread off wait-queue
    Place on ready queue;
  } else {
    *thelock = 0;
  }
  enable interrupts;
}

int mylock=0; 

acquire(&mylock);
 …
 critical section;
 …
release(&mylock);

acquire(int *thelock) {
  disable interrupts;
}

release(int *thelock) 
{
  enable interrupts;
}

If one thread in critical 
section, no other activity 
(including OS) can run!

Lock argument not 
used! 

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf 

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf


Recap: Locks using test & set
int guard = 0; // global!

acquire(int *thelock) {
  // Short busy-wait time
  while(test&set(guard));
  if (*thelock == 1) {
    put thread on wait-queue;
    go to sleep()& guard = 0;

 // guard == 0 on wakeup
  } else {
    *thelock = 1;
    guard = 0;
  }
}

release(int *thelock) {
  // Short busy-wait time
  while (test&set(guard));
  if anyone on wait queue {
    take thread off wait-queue
    Place on ready queue;
  } else {
    *thelock = 0;
  }
  guard = 0;
}

int mylock=0; 

acquire(&mylock);
 …
 critical section;
 …
release(&mylock);

int mylock = 0;
acquire(int *thelock) {
  while(test&set(thelock));
}

release(int *thelock) {
  *thelock = 0;
}

Threads waiting to enter 
critical section 

busy-wait

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf 
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Linux futex: Fast Userspace Mutex

  uaddr points to a 32-bit value in user space
  futex_op

○ FUTEX_WAIT – if val == *uaddr sleep till FUTEX_WAIT
■ Atomic check that condition still holds after we disable interrupts (in kernel!)

○ FUTEX_WAKE – wake up at most val waiting threads
○ FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE: More interesting operations!

  timeout 
○ ptr to a timespec structure that specifies a timeout for the op

● Interface to the kernel sleep() functionality!
○ Let thread put themselves to sleep – conditionally! 

● futex is not exposed in libc; it is used within the implementation of pthreads
○ Can be used to implement locks, semaphores, monitors, etc…

#include <linux/futex.h> 
#include <sys/time.h> 

int futex(int *uaddr, int futex_op, int val, 
   const struct timespec *timeout );

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf 
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Example: First try: T&S and futex

● Properties: 
○ Sleep interface by using futex – no busywaiting

● No overhead to acquire lock
○ Good!

● Every unlock has to call kernel to potentially wake someone up – even if 
none
○ Doesn’t quite give us no-kernel crossings when uncontended…!

int mylock = 0; // Interface: acquire(&mylock);
                //            release(&mylock);

release(int *thelock) {
thelock = 0; // unlock
futex(&thelock, FUTEX_WAKE, 1);

}

acquire(int *thelock) {
while (test&set(thelock)) {

futex(thelock, FUTEX_WAIT, 1);
}

}

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf 
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Example: Try #2: T&S and futex

● This is syscall-free in the uncontended case
○ Temporarily falls back to syscalls if multiple waiters, or concurrent acquire/release

● But it can be considerably optimized!
○ See “Futexes are Tricky” by Ulrich Drepper

release(int*thelock, bool *maybe) {
thelock = 0;
if (*maybe) {

*maybe = false;
// Try to wake up someone
futex(&value, FUTEX_WAKE, 1);

}
}

bool maybe_waiters = false;
int mylock = 0; // Interface: 
acquire(&mylock,&maybe_waiters);
                //            
release(&mylock,&maybe_waiters);

acquire(int *thelock, bool *maybe) {
while (test&set(thelock)) {

// Sleep, since lock busy!
*maybe = true;
futex(thelock, FUTEX_WAIT, 1);

// Make sure other sleepers not stuck
*maybe = true;

}
}

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf 

https://dept-info.labri.fr/~denis/Enseignement/2008-IR/Articles/01-futex.pdf
https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf


Try #3: Better, using more atomics
● Much better: Three (3) states:

○ UNLOCKED: No one has lock
○ LOCKED: One thread has lock
○ CONTESTED: Possibly more 

than one (with someone 
sleeping)

● Clean interface!
● Lock grabbed cleanly by either

○ compare_and_swap()

○ First swap()
● No overhead if uncontested!
● Could build semaphores in a similar 

way!

typedef enum { UNLOCKED,LOCKED,CONTESTED } Lock;
Lock mylock = UNLOCKED; // Interface: 
acquire(&mylock);
                        //            
release(&mylock);

acquire(Lock *thelock) {
// If unlocked, grab lock!
if (compare&swap(thelock,UNLOCKED,LOCKED))

return;

// Keep trying to grab lock, sleep in futex
while (swap(mylock,CONTESTED) != UNLOCKED))

// Sleep unless someone releases heard!
futex(thelock, FUTEX_WAIT, CONTESTED);

}

release(Lock *thelock) {
// If someone sleeping, 
if (swap(thelock,UNLOCKED) == CONTESTED)

futex(thelock,FUTEX_WAKE,1);
}

no one has to be woken up, and so no 
syscalls at all.

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf 
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● See also futex_demo.c in futex(2) - Linux manual page

https://man7.org/linux/man-pages/man2/futex.2.html#:~:text=Program%20source%0A%0A%20%20%20%20%20%20%20/*-,futex_demo.c,-Usage%3A%20futex_demo%20%5Bnloops
https://man7.org/linux/man-pages/man2/futex.2.html


Cache 
coherence https://www.scs.stanford.edu/23wi-c

s212/notes/synchronization1.pdf

For detailed lecture see:
https://booksite.elsevier.com/9780123973375/powerpoint/c
hapter_07.ppt

https://en.wikipedia.org/wiki/Cache_coherence#/media/File:Non_Coherent.gif 

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf
https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt
https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt
https://en.wikipedia.org/wiki/Cache_coherence#/media/File:Non_Coherent.gif


Important memory system properties

Coherence – concerns accesses to a single 
memory location

- There is a total order on all updates

- Must obey program order if access from only 
one CPU

- There is bounded latency before everyone 
sees a write

Consistency – concerns ordering across 
memory locations

- Even with coherence, different CPUs can see 
the same write happen at different times

- Sequential consistency is what matches our 
intuition

(As if operations from all CPUs interleaved on 
one CPU)

- Many architectures offer weaker consistency

- Yet well-defined weaker consistency can still 
be sufficient to implement thread API 

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf


Multicore cache coherence

Performance requires caches

- Divided into chunks of bytes called lines (e.g., 64 bytes)

- Caches create an opportunity for cores to disagree about memory

Bus-based approaches

- “Snoopy” protocols, each CPU listens to memory bus

- Use write-through and invalidate when you see a write bits

- Bus-based schemes limit scalability

Modern CPUs use networks (e.g., hypertransport, infinity fabric, QPI, UPI)

- CPUs pass each other messages about cache lines
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf


MESI coherence protocol
Modified (M)

Exactly one cache has a valid copy
The copy in the current cache is dirty - (needs to be written back to memory)
Must invalidate all copies in other caches before entering this state

Exclusive (E)
Same as modified except the copy in the current cache is clean  (it matches main memory). 

Shared (S)
One or more caches and memory have a valid copy

Invalid (I)
Indicates that this cache line is invalid (unused).

Owned (for enhanced “MOESI” protocol)
has exclusive right to change, others can read but not write

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

For any given pair of caches, the 
permitted states of a given cache line are 
as follows:

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf


Core and Bus Actions

Actions performed by CPU core

- Read

- Write

- Evict (modified? must write back)

Transactions on bus (or interconnect)

- Read: without intent to modify, data can come from memory or another cache

- Read-exclusive: with intent to modify, must invalidate all other

cache copies

- Writeback: contents put on bus and memory is updated

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf


State diagram for MESI

1. PrRd: The processor requests to read a Cache 
block.

2. PrWr: The processor requests to write a Cache 
block

3. BusRd: Snooped request that indicates there is a read 
request to a Cache block requested by another processor

4. BusRdX: Snooped request that indicates there is a write 
request to a Cache block requested by another processor 
that doesn't already have the block.

5. BusUpgr: Snooped request that indicates that there is a 
write request to a Cache block requested by another 
processor that already has that cache block residing in 
its own cache.

6. Flush: Snooped request that indicates that an entire cache 
block is written back to the main memory by another 
processor.

7. FlushOpt: Snooped request that indicates that an entire 
cache block is posted on the bus in order to supply it to 
another processor (Cache to Cache transfers).

https://en.wikipedia.org/wiki/MESI_protocol 

https://en.wikipedia.org/wiki/MESI_protocol


cc-NUMA
Old machines used dance hall architectures

- Any CPU can “dance with” any memory equally

An alternative: Non-Uniform Memory Access (NUMA)

- Each CPU has fast access to some “close” memory

- Slower to access memory that is farther away

- Use a directory to keep track of who is caching what

Originally for esoteric machines with many CPUs

- But AMD and then intel integrated memory controller into CPU

- Faster to access memory controlled by the local socket (or even local die in a multi-chip module)

cc-NUMA = cache-coherent NUMA

- Rarely see non-cache-coherent NUMA (BBN Butterfly 1, Cray T3D)

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf
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Real World Coherence Costs

See [David] for a great reference. Xeon results:

- 3 cycle L1, 11 cycle L2, 44 cycle LLC, 355 cycle local 
RAM

 If another core in same socket holds line in 
modified state:

- load: 109 cycles (LLC + 65)

- store: 115 cycles (LLC + 71)

- atomic CAS: 120 cycles (LLC + 76)

 LLC: non-inclusive last-level cache 

 If a core in a different socket holds line in 
modified state:

- NUMA load: 289 cycles

- NUMA store: 320 cycles

- NUMA atomic CAS: 324 cycles

But only a partial picture

● Could be faster because of out-of-order execution
● Could be slower if interconnect contention or multiple hops

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/sched/readings/david-synchronization.pdf
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf


NUMA and spinlocks

Test-and-set spinlock has several advantages

- Simple to implement and understand

- One memory location for arbitrarily many CPUs

But also has disadvantages

- Lots of traffic over memory interconnect (especially 
w. > 1 spinner)

- Not necessarily fair (lacks bounded waiting)

- Even less fair on a NUMA machine

Better alternative: Test-and-test-and-set Lock

● TTAS performs much better than TAS
● Neither approaches ideal

https://www.scs.stanford.edu/23wi-cs212/notes/synchronizatio
n1.pdf

t
i
m
e

threads
https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt 

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf
https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt


introduce waiting: Backoff lock

Good

● Easy to implement
● Beats TTAS lock

Bad

● Almost same
● Must choose parameters carefully
● Not portable across platforms

https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt 

https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt


NUMA and spinlocks

Test-and-set spinlock has several advantages

- Simple to implement and understand

- One memory location for arbitrarily many CPUs

But also has disadvantages

- Lots of traffic over memory interconnect (especially 
w. > 1 spinner)

- Not necessarily fair (lacks bounded waiting)

- Even less fair on a NUMA machine

Better alternative: Test-and-test-and-set Lock

● TTAS performs much better than TAS
● Neither approaches ideal

➔ Idea 1: Avoid spinlocks altogether (lock free data structures)
➔ Idea 2: Reduce interconnect traffic with better spinlocks 

◆ Design lock that spins only on local memory
◆ Also gives better fairness

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf
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Useful macros
https://en.cppreference.com/w/c/atomic/memory_order

Atomic compare and swap: CAS (mem, old, new)

●  If *mem == old, 
■ then swap *mem↔new 
■ and return true, 

● else false
● On x86, can implement using locked cmpxchg instruction
● In C11, use atomic_compare_exchange_strong

(note: C atomics version sets old = *mem if *mem != old)

Atomic swap: XCHG (mem, new)

● Atomically exchanges *mem↔new
● Implement w. C11 atomic_exchange, or xchg on x86

Atomic fetch and add: FADD (mem, val)

● Atomically sets *mem += val and returns 
old value of *mem

● Implement w. C11 atomic_fetch_add, lock 
add on x86

Atomic fetch and subtract: FSUB (mem, val)

Note: atomics return previous value (like x++, 
not ++x)

All behave like sequentially consistent fences

● In C11, weaker _explicit versions take a 
memory_order argument

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf 
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MCS Lock

Build a better spinlock

• Lock designed by 
Mellor-Crummey and Scott

- Goal: 

● reduce bus traffic on cc 
machines,

● improve fairness

Each CPU has a qnode structure in local memory 

typedef struct qnode {

   _Atomic(struct qnode *) next;

   atomic_bool locked;

} qnode;

● Local can mean local memory in NUMA machine
● Or just its own cache line that gets cached in exclusive 

mode

While waiting, spin on your local locked flag

A lock is a qnode pointer: typedef _Atomic (qnode *) lock;

● Construct list of CPUs holding or waiting for lock
● lock itself points to tail of list list (or NULL when unlocked)

see also pg.151 in https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt, there are also clh lock etc.

https://www.cs.rice.edu/~johnmc/papers/tocs91.pdf
https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt


MCS acquire

● If unlocked, L is NULL
● If locked, no waiters, L is owner’s qnode
● If waiters, *L is tail of waiter list:

acquire(lock *L, qnode *I) {
   I->next = NULL;
   qnode *predecessor = I;
   XCHG(*L, predecessor);
   if (predecessor != NULL) {
       I->locked = true;
       predecessor->next = I;
       while (I->locked)
           ;
   }
}

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf 
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MCS acquire

● If unlocked, L is NULL
● If locked, no waiters, L is owner’s qnode
● If waiters, *L is tail of waiter list:

acquire(lock *L, qnode *I) {
   I->next = NULL;
   qnode *predecessor = I;
   XCHG(*L, predecessor);
   if (predecessor != NULL) {
       I->locked = true;
       predecessor->next = I;
       while (I->locked)
           ;
   }
}

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf 
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MCS acquire

● If unlocked, L is NULL
● If locked, no waiters, L is owner’s qnode
● If waiters, *L is tail of waiter list:

acquire(lock *L, qnode *I) {
   I->next = NULL;
   qnode *predecessor = I;
   XCHG(*L, predecessor);
   if (predecessor != NULL) {
       I->locked = true;
       predecessor->next = I;
       while (I->locked)
           ;
   }
}

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf 
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MCS acquire

● If unlocked, L is NULL
● If locked, no waiters, L is owner’s qnode
● If waiters, *L is tail of waiter list:

acquire(lock *L, qnode *I) {
   I->next = NULL;
   qnode *predecessor = I;
   XCHG(*L, predecessor);
   if (predecessor != NULL) {
       I->locked = true;
       predecessor->next = I;
       while (I->locked)
           ;
   }
}

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf 
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MCS Release with CAS

release(lock *L, qnode *I) {

   if (!I->next)

       if (CAS(*L, I, NULL)) return;

   while (!I->next)

       ;

   I->next->locked = false;

}

If I->next NULL and *L == I

● No one else is waiting for lock, OK to set 
*L = NULL
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MCS Release with CAS

release(lock *L, qnode *I) {

   if (!I->next)

       if (CAS(*L, I, NULL)) return;

   while (!I->next)

       ;

   I->next->locked = false;

}

If I->next NULL and *L != I

● Another thread is in the middle of acquire
● Just wait for I->next to be non-NULL
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MCS Release with CAS

release(lock *L, qnode *I) {

   if (!I->next)

       if (CAS(*L, I, NULL)) return;

   while (!I->next)

       ;

   I->next->locked = false;

}

If I->next is non-NULL 

● I->next oldest waiter, wake up with I->next->locked = false
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MCS Release without CAS

release(lock *L, qnode *I) {

   if (I->next)

       I->next->locked = false;

   else {

       qnode *old_tail = NULL;

       XCHG(*L, old_tail);

       if (old_tail == I) return;

       /* old_tail != I? CAS would have failed, so undo XCHG */

       qnode *userper = old_tail;

       XCHG(*L, userper);

       while (I->next == NULL)

           ;

       if (userper) /* someone changed *L between 2 XCHGs */

           userper->next = I->next;

       else

           I->next->locked = false;

   }

}

1. Atomically swap NULL into *L 
● If old value of *L was I, no waiters 

and we are done 
2. Atomically swap old *L value back 
into *L 

● If *L unchanged, same effect as 
CAS

Otherwise,
● Some “userper” attempted to 

acquire lock between 1 and 2 
● Because *L was NULL, the 

userper succeeded (May be 
followed by zero or more waiters) 

● Graft old list of waiters on to end 
of new last waiter (Sacrifice small 
amount of fairness, but still safe)
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Lock “Free” 
Multithreading: 

source: 
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization
1.pdf 

Atomic operations

Read-modify-write (RMW) atomic 
instructions

Memory barriers (see 
memory-barriers.txt )

In Linux kernel (mb(), smp_mb(), 
etc.), 

assembly instruction asm volatile 
("mfence" : : : "memory")

C11 atomic library, Linux system 
calls 

RCU

Non-blocking synchronization

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf
https://www.kernel.org/doc/Documentation/memory-barriers.txt


Acquire/release semantics 

Passing information reliably between threads about a variable. 

‒ Ideal in producer/consumer type situations (pairing!!). 

‒ After an ACQUIRE on a given variable, all memory accesses preceding any prior RELEASE 
on that same variable are guaranteed to be visible. 

‒ All accesses of all previous critical sections for that variable are guaranteed to have 
completed. 

‒ C++11's memory_order_acquire, memory_order_release and memory_order_relaxed 
(see Memory barriers in C).

https://elinux.org/images/a/ab/Bueso.pdf 

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf
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Spinlocks with release/acquire semantics and atomic ops spinlocks

https://elinux.org/images/a/ab/Bueso.pdf 
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Recall: Producer/Consumer

/* PRODUCER */

for (;;) {

   item *nextProduced = produce_item();

   mutex_lock(&mutex);

   while (count == BUF_SIZE)

 cond_wait(&nonfull, &mutex);

   buffer[in] = nextProduced;

   in = (in + 1) % BUF_SIZE;

   count++;

   cond_signal(&nonempty);

   mutex_unlock(&mutex);

}

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf 

/* CONSUMER */

for (;;) {

   mutex_lock(&mutex);

   while (count == 0)

       cond_wait(&nonempty, &mutex);

   nextConsumed = buffer[out];

   out = (out + 1) % BUF_SIZE;

   count--;

   cond_signal(&nonfull);

   mutex_unlock(&mutex);

   consume_item(nextConsumed);

}
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Eliminating Locks

One use of locks is to coordinate multiple updates of single piece of state

How to remove locks here?

● - Factor state so that each variable only has a single writer

In Producer/Consumer example, Assume one producer, one consumer

Why do we need count variable, written by both? 

● To detect buffer full/empty

Have producer write in, consumer write out (both _Atomic)

- Use in/out to detect buffer state

- But note next example busy-waits, which is less good
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf 
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Lock-free producer/consumer

atomic_int in, out;

void producer(void *ignored) {

   for (;;) {

       item *nextProduced = produce_item();

       while (((in + 1) % BUF_SIZE) == out)

 thread_yield();

       buffer[in] = nextProduced;

       in = (in + 1) % BUF_SIZE;

   }

}

void consumer(void *ignored) {

   for (;;) {

       while (in == out) 

thread_yield();

       nextConsumed = buffer[out];

       out = (out + 1) % BUF_SIZE;

       consume_item(nextConsumed);

   }

}

Note fences not needed because no relaxed atomics
example busy-waits, which is less good
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Version with relaxed atomics

void producer(void *ignored) {

   for (;;) {

       item *nextProduced = produce_item();

       int slot = atomic_load_explicit(&in, memory_order_relaxed);

       int next = (slot + 1) % BUF_SIZE;

       while (atomic_load_explicit(&out, memory_order_acquire) ==

              next)  // Could you use relaxed? ^^^^^^^

           thread_yield();

       buffer[slot] = nextProduced;

       atomic_store_explicit(&in, next, memory_order_release);

   }

}

void consumer(void *ignored) {

   // Use memory_order_acquire to load in (for latest buffer[myin])

   // Use memory_order_release to store out

}
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Non-blocking synchronization
Design algorithm to avoid critical sections

● Any threads can make progress if other threads are preempted
● Which wouldn’t be the case if preempted thread held a lock

Requires that hardware provide the right kind of atomics

● Simple test-and-set is insufficient
● Atomic compare and swap is good: 

○ CAS (mem, old, new) If *mem == old, then swap *mem←→new and return true, else false

Can implement many common data structures

● Stacks, queues, even hash tables

Can implement any algorithm on right hardware

● Need operation such as atomic compare and swap (has property called consensus number = 
∞ [Herlihy])

● Entire kernels have been written without locks [Greenwald]
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Example non-blocking stack

struct item {
   /* data */
   _Atomic(struct item *) next;
};
typedef _Atomic(struct item *) stack_t;
void atomic_push(stack_t *stack, item *i) {
   do {
       i->next = *stack;
   } while (!CAS(stack, i->next, i));
}

item *atomic_pop(stack_t *stack) {
   item *i;
   do {
       i = *stack;
   } while (!CAS(stack, i, i->next));
   return i;
}
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Wait-free stack issues

“ABA” race in pop if other thread pops, re-pushes i 
● - Can be solved by 

○ counters 
○ or hazard pointers to delay re-use
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“Benign” races

Could also eliminate locks by having race conditions

● Maybe you think you care more about speed than correctness 
○ ++hits; /* each time someone accesses web site */

● Maybe you think you can get away with the race 
○ not really: https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html 

if (!initialized) {

   lock(m);

   if (!initialized) {

       initialize();

       atomic_thread_fence(memory_order_release); /* why? */

       initialized = 1;

   }

   unlock(m);

}

But don’t do this [Vyukov], [Boehm]! Not benign at all 
● Again, UB really bad! Like user-after free or array overflow bad 
● If needed for efficiency, use relaxed-memory-order atomics
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Read Copy Update(RCU)
 [McKenney, see also slides Read-Copy Update (RCU), What is RCU, 
Fundamentally? [LWN.net], What is RCU? -- "Read, Copy, Update" — The Linux 
Kernel documentation 

● achieves scalability improvements by 
allowing reads to occur concurrently with 
updates.

● supports concurrency between 
○ a single updater 
○ and multiple readers.

The basic idea behind RCU is to split updates into 
"removal" and "reclamation" phases

● the removal phase runs concurrently with readers
● the typical RCU update sequence goes 

something like the following:
○ Remove pointers to a data structure, so that 

subsequent readers cannot gain a reference to it.
○ Wait for all previous readers to complete their 

RCU read-side critical sections (lightweight 
synchronization).

■ we can separate reclamation phase into 
another thread

○ At this point, there cannot be any readers who hold 
references to the data structure, so it now may 
safely be reclaimed (e.g., kfree()d).

http://www.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf
https://www.cs.unc.edu/~porter/courses/cse506/f12/slides/rcu.pdf
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://www.kernel.org/doc/html/next/RCU/whatisRCU.html
https://www.kernel.org/doc/html/next/RCU/whatisRCU.html


Read-copy update

Some data is read way more often than written 

● Routing tables consulted for each forwarded packet 
● Data maps in system with 100+ disks (updated on disk failure)

Optimize for the common case of reading without lock 

● E.g., global variable: _Atomic(routing_table *) rt; 
● use without lock

#define RELAXED(var) atomic_load_explicit(&(var), memory_order_relaxed)
/* ... */
route = lookup(RELAXED(rt), destination);

Update by making copy, swapping pointer

/* update mutex held here, serializing updates */
routing_table *newrt = copy_routing_table(rt);
update_routing_table(newrt);
atomic_store_explicit(&rt, newrt, memory_order_release);
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Is RCU really safe?

Consider the use of global rt with no fences: 

lookup(RELAXED(rt), route); 

Could a CPU read new pointer but then old contents of *rt?

● Yes on alpha, No on all other existing architectures

When can you free memory of old routing table? 

● When you are guaranteed no one is using it—how to determine?
○ for more info see Read-Copy Update (RCU) 
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Deadlock problem



mutex_t m1, m2;

void p1(void *ignored) {

   lock(m1);

   lock(m2);

   /* critical section */

   unlock(m2);

   unlock(m1);

}

void p2(void *ignored) {

   lock(m2);

   lock(m1);

   /* critical section */

   unlock(m1);

   unlock(m2);

}

This program can cease to make progress – how? 
Can you have deadlock w/o mutexes?
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Deadlock conditions

1. Limited access (mutual exclusion):

- Resource can only be shared with finite users

2. No preemption:

- Once resource granted, cannot be taken away

3. Multiple independent requests (hold and 
wait):

- Don’t ask all at once (wait for next resource 
while holding current one)

4. Circularity in graph of requests

All of 1–4 necessary for deadlock to occur

Two approaches to dealing with deadlock:

- Pro-active: prevention

- Reactive: detection + corrective action

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf 
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Prevent by eliminating one condition

1. Limited access (mutual exclusion):

- Resource can only be shared with finite users

2. No preemption:

- Once resource granted, cannot be taken away

3. Multiple independent requests (hold and 
wait):

- Don’t ask all at once (wait for next resource 
while holding current one)

4. Circularity in graph of requests

● Single lock for entire system: 
(problems?)

● Partial ordering of resources (next)
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Detecting deadlocks
● Static approaches (hard)
● Dynamically, program grinds to a halt 

○ Threads package can diagnose by keeping track of locks held:
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Fixing and debugging deadlocks

Reboot system / restart application

Examine hung process with debugger

Threads package can deduce partial order

● - For each lock acquired, order with other 
locks held

● - If cycle occurs, abort with error
● - Detects potential deadlocks even if they 

do not occur

 Or use transactions. . .

● - Another paradigm for handling 
concurrency

● - Often provided by databases, but some 
OSes use them
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Transactions

A transaction is a collection of the properties

● Atomicity – all or none of actions happen
● Consistency – T leaves data in valid state
● Isolation – T’s actions all appear to happen before 

or after every
● other transaction
● Durability – T’s effects will survive reboots

ACID  a set of properties of database transactions intended to 
guarantee data validity despite errors, power failures, and other 
mishaps

Transactions typically executed concurrently

● But isolation means must appear not 
to

● Must roll-back transactions that use 
others’ state

● Means you have to record all changes 
to undo them

★ When deadlock detected just abort a 
transaction

○ Breaks the dependency cycle
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Transactional memory
Some modern processors support transactional memory

★ a promising alternative to lock-based 
synchronization mechanisms

○ Non-blocking 

Transactional Synchronization Extensions (TSX) 
[intel1§16]

- xbegin abort_handler – begins a transaction

- xend – commit a transaction

- xabort $code – abort transaction with 8-bit code

- Note: nested transactions okay (also xtest tests if in 
transaction)

During transaction, processor tracks accessed 
memory

● Keeps read-set and write-set of cache lines
● Nothing gets written back to memory during 

transaction
● Transaction aborts (at xend or earlier) if any 

conflicts
● Otherwise, all dirty cache lines are “written” 

atomically
● (in practice switch to non-transactional M 

state of MESI)

 TM system ensure atomicity by detecting and 
resolving any conflict arising between concurrent 
transactions
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Using transactional memory

Idea: Use to get “free” fine-grained locking on a 
hash table

● E.g., concurrent inserts that don’t touch 
same buckets are okay

○ Automatic Mutual Exclusion method

Can also use to poll for one of many 
asynchronous events

● Start transaction
● Fill cache with values to which you want to 

see changes
● Loop until a write causes your transaction 

to abort

Note: Transactions are never guaranteed to 
commit
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Hardware lock elision (HLE)

concurrently executes lock critical sections 
as hardware transactions, but fallbacks to 
the original sequential lock fallback path 
when some hardware transaction fails. 

● Begin a transaction when you acquire lock
● Other CPUs won’t see lock acquired, can 

also enter critical section
● Okay not to have mutual exclusion when 

no memory conflicts!
● On conflict, abort and restart without 

transaction, thereby visibly acquiring lock 
(and aborting other concurrent 
transactions)
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Intel support:

● Use xacquire prefix before xchgl (used for 
test and set)

● Use xrelease prefix before movl that 
releases lock

● Prefixes chosen to be noops on older 
CPUs (binary compatibility)

Hash table example:

● - Use xacquire xchgl in table-wide 
test-and-set spinlock

● - Works correctly on older CPUs (with 
coarse-grained lock)

● - Allows safe concurrent accesses on 
newer CPUs!
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