
Synchronization
II

● Lock implementation
○ interrupts
○ spinlock

■ yield()
● queues

■ futex
● cache coherency
● Lock Free Data Structures

○ Lockless patterns: more read-modify-write
operations [LWN.net]

○ C11 Atomic operations library
■ Atomic operations library
■ memory_order - cppreference.com
■ slides: Memory barriers in C
■ linux kernel memory barriers: Linux

kernel documentation on memory
barriers An introduction to lockless
algorithms [LWN.net]
https://www.scs.stanford.edu/23wi-cs21
2/sched/readings/why-memory-barriers.
pdf

● RCU
● Deadlock
● Transactions

https://lwn.net/Articles/849237/
https://lwn.net/Articles/849237/
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic/memory_order
https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://lwn.net/Articles/844224/
https://lwn.net/Articles/844224/
https://www.scs.stanford.edu/23wi-cs212/sched/readings/why-memory-barriers.pdf
https://www.scs.stanford.edu/23wi-cs212/sched/readings/why-memory-barriers.pdf
https://www.scs.stanford.edu/23wi-cs212/sched/readings/why-memory-barriers.pdf

Program A: Can both critical
sections run?
int flag1 = 0, flag2 = 0;
void p1(void *ignored) {
 flag1 = 1;
 if (!flag2) {
 critical_section_1();
 }
}
void p2(void *ignored) {
 flag2 = 1;
 if (!flag1) {
 critical_section_2();
 }
}
int main() {
 tid id = thread_create(p1, NULL);
 p2();
 thread_join(id);
}

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf

● thread executions are interleaved!
● non-preemptive threads

○ 1 thread executes exclusively
● preemptive threads

○ may switch to another thread
between instructions

● Multiple CPU is inherently
preemptive

Reminder

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf

Program B:
Can use() be called with value 0:

use(0)?

int data = 0;

int ready = 0;

void p1(void *ignored) {

 data = 2000;

 ready = 1;

}

void p2(void *ignored) {

 while (!ready)

 ;

 use(data);

}

int main() { ... }

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf

Program C: If p1–3 run concurrently, can use be called with value 0?

int a = 0;

int b = 0;

void p1(void *ignored) { a = 1; }

void p2(void *ignored) {

 if (a == 1) b = 1;

}

void p3(void *ignored) {

 if (b == 1) use(a);

}

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf

Answers

We do not know!

● It depends on what machine you use
● If a system provides sequential consistency,

○ then answers all No

● But not all hardware provides sequential consistency

Sequential consistency(SC): The result of execution is as if all operations were
executed in some sequential order, and the operations of each processor occurred in
the order specified by the program. – Lamport

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf

Why doesn’t all hardware support sequential consistency?
➔ many of the compiler and processor optimizations

would be illegal!

https://www.scs.stanford.edu/23wi-cs212/notes/concurrency.pdf

SC prevents hardware optimizations

● Complicates write buffers
○ E.g., read flag(n) before flag(3 − n) written through in Program A

● Can’t re-order overlapping write operations
○ Concurrent writes to different memory modules

○ Coalescing writes to same cache line

● Complicates non-blocking reads
○ E.g., speculatively prefetch data in Program B

● Makes cache coherence more expensive
○ Must delay write completion until invalidation/update (Program B)

○ Can’t allow overlapping updates if no globally visible order (Program C)

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

SC prevents hardware optimizations

● Code motion
● Caching value in register

○ Collapse multiple loads/stores of same address into one operation

● Common subexpression elimination
○ Could cause memory location to be read fewer times

● Loop blocking
○ Re-arrange loops for better cache performance

● Software pipelining
○ Move instructions across iterations of a loop to overlap instruction latency with

branch cost

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

x86 consistency [intel 3a, §8.2]
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A:
System Programming Guide, Part 1
● x86 supports multiple consistency/caching models

○ Memory Type Range Registers (MTRR) specify consistency for ranges of physical memory
(e.g., frame buffer)

○ Page Attribute Table (PAT) allows control for each 4K page
● Choices include:

○ WB: Write-back caching (the default)
○ WT: Write-through caching (all writes go to memory)
○ UC: Uncacheable (for device memory)
○ WC: Write-combining – weak consistency & no caching (used for frame buffers, when

sending a lot of data to GPU)
● Some instructions have weaker consistency

○ String instructions (written cache-lines can be re-ordered)
○ Special “non-temporal” store instructions (movnt∗) that bypass cache and can be re-ordered

with respect to other writes

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

● Old x86s (e.g, 486, Pentium 1) had almost SC
○ Exception: A read could finish before an earlier write to a different location

○ Which of Programs A, B, C might be affected?
■ just A

● Newer x86s also let a CPU read its own writes early

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

● E.g., both p1 and p2 can return 2:
● Older CPUs would wait at “f = ...” until store complete

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

Assuming sequential
consistency

Peterson’s solution

// P0

while (true){

 // wants to enter

 flag[0] = true;

 turn = 1;

 while (flag[1] && turn == 1){

 ;

 }

 /* critical section */

 flag[0] = false;

 /* remainder section */

}

// P1

while (true){

 // wants to enter

 flag[1] = true;

 turn = 0;

 while (flag[0] && turn == 0) {

 ;

 }

 /* critical section */

 flag[1] = false;

 /* remainder section */

}

int flag[2] = {false, false}; /*flag[i] indicates that Pi wants to enter critical section (it’s

ready)*/

int turn = 0; /*indicates which process has the priority (lock) to enter in its CS*/

This will not work in modern architectures:
For multithreaded programs, reordering of the statements cause
inconsistency!

example

https://preshing.com/20120515/memory-reordering-caught-in-the-act/

https://preshing.com/20120515/memory-reordering-caught-in-the-act/

Peterson expensive, only works for 2 processes

- Can generalize to n, but for some fixed n

Must adapt to machine memory model if not SC

- If you need machine-specific barriers anyway, might as well take advantage
of other instructions helpful for synchronization

➔ Want to insulate programmer from implementing synchronization
primitives
◆ thread library packages

Libraries for User Apps

Pthread and other libraries

In System Programming and OOP courses, we
have seen that there are libraries that allow us to
write multithreaded programs.

Thread packages typically provide mutexes:

void mutex_init (mutex_t *m, ...);

void mutex_lock (mutex_t *m);

int mutex_trylock (mutex_t *m);

void mutex_unlock (mutex_t *m);
● Only one thread acquires m at a time,

others wait

Pthread library (Posix thread library) is such an
example that provides an API for multithreaded
user programs. In the pthread library, we have
seen two different synchronization tools: mutex
and condition variables.

Mutexes

//m1 is a mutex variable

mutex_lock(m1);//acquire lock

critical_section

mutex_unlock(m1); //release lock

● You can consider lock as “a mic among participants that controls who has
the right to speak”,

○ i.e whoever has the mic (m1) has the right to speak (in our case do ops on the memory shared
among the participants).

Monitors(Monitors = cond var + mutex)
//two threads: e.g. producer/consumer

//Condition variables: c1 is for one condition, c2 is for another condition

//Locks: m1 to control the access to the critical section.

//1st thread

mutex_lock(m1);

/*critical section entry*/

while(need_to_wait_1){

cond_wait(c1, m1);

}

/*critical section exit*/

cond_signal(c2) //or broadcast

mutex_unlock(m1);

// 2nd thread

mutex_lock(m1);

/*critical section entry*/

while(need_to_wait_2){

 cond_wait(c2, m1);

};

/*critical section exit*/

cond_signal(c1) //or broadcast

mutex_unlock(m1);

Monitors = cond var + mutex
Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section
➔ Three Operations: Wait(), Signal(), and Broadcast()

● Monitors represent the logic of the program
○ Wait if necessary
○ Signal when change something so any waiting threads can proceed

//1st thread

mutex_lock(m1);

/*critical section entry*/

while(need_to_wait_1){

cond_wait(c1, m1);

}

/*critical section exit*/

cond_signal(c2) //or broadcast

mutex_unlock(m1);

// 2nd thread

mutex_lock(m1);

/*critical section entry*/

while(need_to_wait_2){

 cond_wait(c2, m1);

};

/*critical section exit*/

cond_signal(c1) //or broadcast

mutex_unlock(m1);

Semaphores

sem_t s;

sem_init(&s, 0, 10);

//a thread that wants to occupy a chair

sem_wait(&s); //down the value of s by 1

//After done with the chair

sem_post(&s); //up the value of s by 1

● If the return value of sem_wait is negative the thread waits as done in the mutex locks.
○ This happens when the value of s before sem_wait is 0.

● sem_wait and sem_post can be called from different processes/threads.

In Linux kernel

● Pthread API is implemented by using
NPTL (Native POSIX Thread Library -
Wikipedia).

○ It uses the system calls such as clone and
futex, and atomic operations to create a
library in glibc (The GNU C Library)

○ (see pthread_create.c source code
[glibc/nptl/pthread_create.c] - Codebrowser).

There are also alternative/different pthread
implementations for Linux.

In the kernel space,

● similarly to processes, you can also
spawn threads by using kernel
threads(kthreads).

● There is also similar lock mechanism
you can use(see locking — The Linux
Kernel documentation)

https://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
https://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
https://www.gnu.org/software/libc/
https://codebrowser.dev/glibc/glibc/nptl/pthread_create.c.html
https://codebrowser.dev/glibc/glibc/nptl/pthread_create.c.html
https://docs.kernel.org/locking/index.html
https://docs.kernel.org/locking/index.html

Lock
implementation

Goals:

● Correctness
○ Mutual exclusion: only one thread in

critical section at a time
○ Progress (deadlock-free): if several

simultaneous requests, must allow one to
proceed

○ Bounded wait (starvation-free): must
eventually allow each waiting thread to
enter

● Fairness: each thread waits for same
amount of time

○ Also, threads acquire locks in the same
order as requested

● Performance: CPU time is used
efficiently

both user/kernel need
synchronization!

● Locks are variables in shared
memory
○ Two main operations: acquire()

and release()
○ Also called lock() and unlock()

● To check if locked,
○ read variable and check value

● To acquire,
○ write “locked” value to variable
○ Should only do this if already unlocked
○ If already locked, keep reading value until

unlock observed

● To release,
○ write “unlocked” value to variable

Implementing as a straightforward data structure?

typedef struct mutex {

 bool is_locked; /* true if locked */

 thread_id_t owner; /* thread holding lock, if locked */

 thread_list_t waiters; /* threads waiting for lock */

 lower_level_lock_t lk; /* Protect above fields */

};

★ Fine, so long as we avoid data races on the mutex itself
➔ Need lower-level lock lk for mutual exclusion

◆ Internally, mutex_* functions bracket code with

lock(&mutex->lk) . . . unlock(&mutex->lk)

➔ Otherwise, data races! (E.g., two threads manipulating waiters

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

How to implement lower_level_lock_t lk;?

● Could use Peterson’s
algorithm,
○ typically a bad idea

■ too slow
■ and don’t know

maximum number of
threads

Two approaches

1. Disable interrupts
a. works only in kernel

2. Spinlocks

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

● How can we build multi-instruction
atomic operations?
○ Recall: dispatcher gets control in two

ways.
■ Internal: Thread does something to

relinquish the CPU
■ External: Interrupts cause dispatcher

to take CPU
○ On a uniprocessor, can avoid

context-switching by:
■ Avoiding internal events (although

virtual memory tricky)
■ Preventing external events by

disabling interrupts

Approach 1: Disable interrupts
Naïve use of Interrupt Enable/Disable

● Consequently, naïve Implementation of locks:

LockAcquire {
 disable interrupts;
}

LockRelease {
 enable interrupts;
}

● Problems with this approach:
○ Can’t let user do this!

LockAcquire();
while(true) {;}

○ Real-Time system—no guarantees on timing!
■ Critical Sections might be arbitrarily long

○ What happens with I/O or other important events?
■ “Reactor about to meltdown. Help?”

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

Better Implementation of Locks by Disabling Interrupts

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

● Key idea: maintain a lock variable and impose mutual exclusion only during
operations on that variable

● Really only works in kernel – why?

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

Why do we need to disable interrupts at all?
● Avoid interruption between checking and setting lock value.
● Prevent switching to other thread that might be trying to acquire lock!
● Otherwise two threads could think that they both have lock!

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

“Meta-”
Critical
Section

● Note: unlike previous solution, this “meta-”critical section is very short
○ User of lock can take as long as they like in their own critical section: doesn’t impact global

machine behavior
○ Critical interrupts taken in time!

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

What about re-enabling ints when going to sleep?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;

Go to sleep();

} else {

value = BUSY;
}
enable interrupts;

}

● Want to put it after sleep(). But – how?

● Before putting thread on
the wait queue?
○ Release can check the

queue and not wake up
thread

● After putting the thread
on the wait queue?
○ Release puts the thread on

the ready queue, but the
thread still thinks it needs to
go to sleep

○ Misses wakeup and still
holds lock (deadlock!)

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lecture
s/8.pdf

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf
https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

How to Re-enable After Sleep()?

In scheduler, since interrupts are disabled when you call sleep:

– Responsibility of the next thread to re-enable ints

– When the sleeping thread wakes up, returns to acquire and re-enables interrupts

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

Problems with interrupt based locks

Can’t give lock implementation to users

Doesn’t work well on multiprocessor

● Disabling interrupts on all processors requires messages and would
be very time consuming

But sometimes most efficient solution for uniprocessors

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

for apps with n : 1 threads (1 kthread)

Cannot take advantage of
multiprocessors

But sometimes most efficient solution
for uniprocessors

Typical setup:

● periodic timer signal caught by thread scheduler
● Have per-thread “do not interrupt” (DNI) bit

lock (lk):

● sets thread’s DNI bit

If timer interrupt arrives

● Check interrupted thread’s DNI bit
● If DNI clear,

○ preempt current thread
● If DNI set,

○ set “interrupted” (I) bit
○ & resume current thread

unlock (lk):

● clears DNI bit and checks (I) bit
● If I bit is set, immediately yields the CPU

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

Approach 2: Spinlocks

○ Idea is to implement something like this:

bool lock = false; // shared variable

void acquire(bool *lock) {

 while (*lock) /* wait */

 ;

 *lock = true;

}

void release(bool *lock) { *lock = false; }

This does not work!
● Checking and writing of the lock value in acquire() need to happen atomically.

Spinlocks

Most CPUs support atomic read-[modify-]write
● Test and Set
● Fetch and Add
● Compare and Swap (CAS)
● Load Linked / Store Conditional

Hardware is responsible for implementing this correctly

Example: int test_and_set (int *lockp);
● atomically sets *lockp = 1
● and returns old value

Special instruction
➔ no way to implement in portable C99
➔ C11 supports with explicit atomic_flag_test_and_set function
➔ C11 Atomic operations library

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

https://en.cppreference.com/w/c/atomic
https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

Synchronization on x86

x86 xchg instruction, exchanges reg with mem
_test_and_set :

movl 4(% esp), % edx # % edx = lockp

movl $1, % eax # % eax = 1

xchgl % eax, (% edx) # swap(% eax, *lockp)

ret

// Implementation in x86 :
int TAS(volatile int *addr, int newval) {
 int result = newval;
 asm volatile("lock; xchg %0, %1"
 : "+m"(*addr), "=r"(result)
 : "1"(newval)
 : "cc");
 return result;
}

CPU locks memory system around
read and write

● xchgl always acts like it has
implicit lock prefix

● Prevents other uses of the
bus (e.g., DMA)

Usually runs at memory bus speed,
not CPU speed

● Much slower than cached
read/buffered write

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

recall: using in critical section problem

volatile int lock = 0;

void critical() {
 while (test_and_set(&lock) == 1);/*spinlock*/

 /* critical section */

 lock = 0; /* release lock when finished CS*
}

Use spinlocks to implement mutex’s lower_level_lock_t

#define lock(lockp) while (test_and_set (lockp))
#define trylock(lockp) (test_and_set (lockp) == 0)
#define unlock(lockp) *lockp = 0

 Can you use spinlocks instead of mutexes?
➔ Wastes CPU, especially if thread holding lock not running
➔ Mutex functions have short C.S., less likely to be preempted
➔ On multiprocessor, sometimes good to spin for a bit, then yield

typedef struct mutex {

bool is_locked;

thread_id_t owner;

thread_list_t waiters;

lower_level_lock_t lk;

};

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

Problem: Busy-Waiting for Lock
● Positives for this solution

○ Machine can receive interrupts

○ User code can use this lock

○ Works on a multiprocessor

● Negatives
○ This is very inefficient as thread will consume cycles waiting

○ Waiting thread may take cycles away from thread holding lock (no one wins!)

○ Priority Inversion: If busy-waiting thread has higher priority than thread holding lock ⇒ no
progress!

● Priority Inversion problem with original Martian rover
● For higher-level synchronization primitives (e.g. semaphores or monitors),

waiting thread may wait for an arbitrary long time!
○ Thus even if busy-waiting was OK for locks, definitely not ok for other primitives

○ Homework/exam solutions should avoid busy-waiting!

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

Kernel Synchronization

 Old UNIX had 1 CPU, non-preemptive threads, no mutexes
- Interface designed for single CPU, so count++ etc. not data race

- . . .Unless memory shared with an interrupt handler
int x = splhigh (); /* bsd Disable interrupts, preempt_disable() in Linux */

/* touch data shared with interrupt handler ... */

splx (x); /* bsd Restore previous state, preempt_enable in Linux */

● Used arbitrary pointers like condition variables

int [t]sleep (void *ident, int priority, ...);

put thread to sleep; will wake up at priority (∼cond_wait)

int wakeup (void *ident);

wake up all threads sleeping on ident (∼cond_broadcast)

Should kernel use locks or disable interrupts?

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

Kernel Locks

Nowadays, should design for multiprocessors

● Even if first version of OS is for uniprocessor
● Someday may want multiple CPUs and need preemptive threads
● That’s why Pintos uses sleeping locks (sleeping locks means mutexes, as

opposed to spinlocks)

Multiprocessor performance needs fine-grained locks

● Want to be able to call into the kernel on multiple CPUs

If kernel has locks, should it ever disable interrupts?

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/concurrency.pdf

Kernel Locks

If kernel has locks, should it ever disable interrupts?

● Yes! Can’t sleep in interrupt handler, so can’t wait for lock
● So even modern OSes have support for disabling interrupts
● Often uses DNI trick when cheaper than masking interrupts in hardware

Improving
spinlock

performance Kernel support for userspace
sleeping locks

Cache Coherence

Hardware

Higher-le
vel
API

Programs

Recall: Where are we going with synchronization?

● We are going to implement various higher-level synchronization
primitives using atomic operations
○ Everything is pretty painful if only atomic primitives are load and store

○ Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

Evaluating our lock Implementation with TAS

typedef struct __lock_t {

 int flag;

} lock_t;

void init(lock_t *lock) { lock->flag = 0; }

void acquire(lock_t *lock) {

 while (test_and_set(&lock->flag, 1) == 1)

 ; // spin-wait (do nothing)

}

void release(lock_t *lock) { lock->flag = 0; }

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

Evaluating our lock Implementation with TAS

1) Mutual exclusion: only one thread in critical
section at a time

2) Progress (deadlock-free): if several
simultaneous requests,must allow one to
proceed

3) Bounded wait: must eventually allow each
waiting thread to enter

4) Fairness: threads acquire lock in the order
of requesting

5) Performance: CPU time is used efficiently

3, 4, 5 may NOT be
satisfied in practice!

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

our spinlock is not fair!

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

● Busy-Waiting: thread consumes cycles while waiting
○ For multiprocessors: every test&set() is a write, which makes value ping-pong

around in cache (using lots of network BW)

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

Fairness and Bounded Wait

Use Ticket Locks

Idea: reserve each thread’s turn to use a
lock.

• Each thread spins until their turn.

Use new atomic primitive: fetch-and-add

// Semantic

int fetch_and_add(int *ptr) {

 int old = *ptr;

 *ptr = old + 1;

 return old;

}

// example implementation

// GCC’s built-in atomic function

__sync_fetch_and_add(ptr, 1)

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

ticket-lock implementation
typedef struct {

 int ticket;

 int turn;

} lock_t;

void lock_init(lock_t *lock) {

 lock->ticket = 0;

 lock->turn = 0;

}

void acquire(lock_t *lock) {

 int myturn = fetch_and_add(&lock->ticket);

 while (lock->turn != myturn)

 ; // spin

}

void release(lock_t *lock) {

lock->turn += 1;

}

Busy-waiting(spinning) performance

Good when…

● many CPUs
● locks held a short time
● advantage: avoid context switch

Awful when…

● one CPU
● locks held a long time
● disadvantage: spinning is wasteful

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

https://en.wikipedia.org/wiki/Ticket_lock
https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

CPU Scheduler Is Ignorant

busy-waiting (spinning) locks

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

Ticket Lock with yield() (see Linus Torvalds comment)

typedef struct {

 int ticket;

 int turn;

} lock_t;

void acquire(lock_t *lock) {

 int myturn = fetch_and_add(&lock->ticket);

 while (lock->turn != myturn) sched_yield();

}

void release(lock_t *lock) { lock->turn += 1; }

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

https://www.realworldtech.com/forum/?threadid=189711&curpostid=189752
https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

yielding instead of spinning
Wasted time

● Without yield: O(threads × time_slice)
● With yield: O(threads × context_switch_time)

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

Evaluating Ticket Lock

5) Performance: CPU time is used efficiently

➔ 5 (even with yielding, too much overhead)

So even with yield, spinning is slow with high thread contention

Next improvement: instead of spinning, block and put thread on a wait queue

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/slides/11-locks.pdf

Blocking Locks with queues

acquire() removes waiting threads from run queue using special system call

release() returns waiting threads to run queue using special system call

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

Better Locks using test&set
● Can we build test&set locks without busy-waiting?

○ Mostly. Idea: only busy-wait to atomically check lock value

release(int *thelock) {
// Short busy-wait time
while (test_and_set(guard));
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
*thelock = FREE;

}
guard = 0;

int guard = 0; // Global Variable!
int mylock = FREE; // Interface: acquire(&mylock);
 // release(&mylock);

acquire(int *thelock) {
// Short busy-wait time
while (test_and_set(guard));
if (*thelock == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;
// guard == 0 on wakeup!

} else {
*thelock = BUSY;
guard = 0;

}
}

● Note: sleep has to be sure to reset the guard variable
○ Why can’t we do it just before or just after the sleep?

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

Kernel support for sleeping locks

Sleeping locks must interact with scheduler

- For processes or kernel threads, must go into kernel (expensive)

- Common case is you can acquire lock—how to optimize?

• Idea: never enter kernel for uncontested lock

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

futex abstraction solves the problem

- Ask kernel to sleep only if memory location hasn’t changed

• void futex (int *uaddr, FUTEX_WAIT, int val. . .);

- Go to sleep only if *uaddr == val

- Extra arguments allow timeouts, etc.

• void futex (int *uaddr, FUTEX_WAKE, int val. . .);

- Wake up at most val threads sleeping on uaddr

• uaddr is translated down to offset in VM object

- So works on memory mapped file at different virtual addresses in different processes

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

Recap: Locks using interrupts

acquire(int *thelock) {
 // Short busy-wait time
 disable interrupts;
 if (*thelock == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 *thelock = 1;
 enable interrupts;
 }
}

release(int *thelock) {
 // Short busy-wait time
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 *thelock = 0;
 }
 enable interrupts;
}

int mylock=0;

acquire(&mylock);
 …
 critical section;
 …
release(&mylock);

acquire(int *thelock) {
 disable interrupts;
}

release(int *thelock)
{
 enable interrupts;
}

If one thread in critical
section, no other activity
(including OS) can run!

Lock argument not
used!

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

Recap: Locks using test & set
int guard = 0; // global!

acquire(int *thelock) {
 // Short busy-wait time
 while(test&set(guard));
 if (*thelock == 1) {
 put thread on wait-queue;
 go to sleep()& guard = 0;

 // guard == 0 on wakeup
 } else {
 *thelock = 1;
 guard = 0;
 }
}

release(int *thelock) {
 // Short busy-wait time
 while (test&set(guard));
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 *thelock = 0;
 }
 guard = 0;
}

int mylock=0;

acquire(&mylock);
 …
 critical section;
 …
release(&mylock);

int mylock = 0;
acquire(int *thelock) {
 while(test&set(thelock));
}

release(int *thelock) {
 *thelock = 0;
}

Threads waiting to enter
critical section

busy-wait

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

Linux futex: Fast Userspace Mutex

 uaddr points to a 32-bit value in user space
 futex_op

○ FUTEX_WAIT – if val == *uaddr sleep till FUTEX_WAIT
■ Atomic check that condition still holds after we disable interrupts (in kernel!)

○ FUTEX_WAKE – wake up at most val waiting threads
○ FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE: More interesting operations!

 timeout
○ ptr to a timespec structure that specifies a timeout for the op

● Interface to the kernel sleep() functionality!
○ Let thread put themselves to sleep – conditionally!

● futex is not exposed in libc; it is used within the implementation of pthreads
○ Can be used to implement locks, semaphores, monitors, etc…

#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex_op, int val,
 const struct timespec *timeout);

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

Example: First try: T&S and futex

● Properties:
○ Sleep interface by using futex – no busywaiting

● No overhead to acquire lock
○ Good!

● Every unlock has to call kernel to potentially wake someone up – even if
none
○ Doesn’t quite give us no-kernel crossings when uncontended…!

int mylock = 0; // Interface: acquire(&mylock);
 // release(&mylock);

release(int *thelock) {
thelock = 0; // unlock
futex(&thelock, FUTEX_WAKE, 1);

}

acquire(int *thelock) {
while (test&set(thelock)) {

futex(thelock, FUTEX_WAIT, 1);
}

}

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

Example: Try #2: T&S and futex

● This is syscall-free in the uncontended case
○ Temporarily falls back to syscalls if multiple waiters, or concurrent acquire/release

● But it can be considerably optimized!
○ See “Futexes are Tricky” by Ulrich Drepper

release(int*thelock, bool *maybe) {
thelock = 0;
if (*maybe) {

*maybe = false;
// Try to wake up someone
futex(&value, FUTEX_WAKE, 1);

}
}

bool maybe_waiters = false;
int mylock = 0; // Interface:
acquire(&mylock,&maybe_waiters);
 //
release(&mylock,&maybe_waiters);

acquire(int *thelock, bool *maybe) {
while (test&set(thelock)) {

// Sleep, since lock busy!
*maybe = true;
futex(thelock, FUTEX_WAIT, 1);

// Make sure other sleepers not stuck
*maybe = true;

}
}

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

https://dept-info.labri.fr/~denis/Enseignement/2008-IR/Articles/01-futex.pdf
https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

Try #3: Better, using more atomics
● Much better: Three (3) states:

○ UNLOCKED: No one has lock
○ LOCKED: One thread has lock
○ CONTESTED: Possibly more

than one (with someone
sleeping)

● Clean interface!
● Lock grabbed cleanly by either

○ compare_and_swap()

○ First swap()
● No overhead if uncontested!
● Could build semaphores in a similar

way!

typedef enum { UNLOCKED,LOCKED,CONTESTED } Lock;
Lock mylock = UNLOCKED; // Interface:
acquire(&mylock);
 //
release(&mylock);

acquire(Lock *thelock) {
// If unlocked, grab lock!
if (compare&swap(thelock,UNLOCKED,LOCKED))

return;

// Keep trying to grab lock, sleep in futex
while (swap(mylock,CONTESTED) != UNLOCKED))

// Sleep unless someone releases heard!
futex(thelock, FUTEX_WAIT, CONTESTED);

}

release(Lock *thelock) {
// If someone sleeping,
if (swap(thelock,UNLOCKED) == CONTESTED)

futex(thelock,FUTEX_WAKE,1);
}

no one has to be woken up, and so no
syscalls at all.

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

https://inst.eecs.berkeley.edu/~cs162/sp22/static/lectures/8.pdf

● See also futex_demo.c in futex(2) - Linux manual page

https://man7.org/linux/man-pages/man2/futex.2.html#:~:text=Program%20source%0A%0A%20%20%20%20%20%20%20/*-,futex_demo.c,-Usage%3A%20futex_demo%20%5Bnloops
https://man7.org/linux/man-pages/man2/futex.2.html

Cache
coherence https://www.scs.stanford.edu/23wi-c

s212/notes/synchronization1.pdf

For detailed lecture see:
https://booksite.elsevier.com/9780123973375/powerpoint/c
hapter_07.ppt

https://en.wikipedia.org/wiki/Cache_coherence#/media/File:Non_Coherent.gif

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf
https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt
https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt
https://en.wikipedia.org/wiki/Cache_coherence#/media/File:Non_Coherent.gif

Important memory system properties

Coherence – concerns accesses to a single
memory location

- There is a total order on all updates

- Must obey program order if access from only
one CPU

- There is bounded latency before everyone
sees a write

Consistency – concerns ordering across
memory locations

- Even with coherence, different CPUs can see
the same write happen at different times

- Sequential consistency is what matches our
intuition

(As if operations from all CPUs interleaved on
one CPU)

- Many architectures offer weaker consistency

- Yet well-defined weaker consistency can still
be sufficient to implement thread API

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

Multicore cache coherence

Performance requires caches

- Divided into chunks of bytes called lines (e.g., 64 bytes)

- Caches create an opportunity for cores to disagree about memory

Bus-based approaches

- “Snoopy” protocols, each CPU listens to memory bus

- Use write-through and invalidate when you see a write bits

- Bus-based schemes limit scalability

Modern CPUs use networks (e.g., hypertransport, infinity fabric, QPI, UPI)

- CPUs pass each other messages about cache lines
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

MESI coherence protocol
Modified (M)

Exactly one cache has a valid copy
The copy in the current cache is dirty - (needs to be written back to memory)
Must invalidate all copies in other caches before entering this state

Exclusive (E)
Same as modified except the copy in the current cache is clean (it matches main memory).

Shared (S)
One or more caches and memory have a valid copy

Invalid (I)
Indicates that this cache line is invalid (unused).

Owned (for enhanced “MOESI” protocol)
has exclusive right to change, others can read but not write

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

For any given pair of caches, the
permitted states of a given cache line are
as follows:

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

Core and Bus Actions

Actions performed by CPU core

- Read

- Write

- Evict (modified? must write back)

Transactions on bus (or interconnect)

- Read: without intent to modify, data can come from memory or another cache

- Read-exclusive: with intent to modify, must invalidate all other

cache copies

- Writeback: contents put on bus and memory is updated

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

State diagram for MESI

1. PrRd: The processor requests to read a Cache
block.

2. PrWr: The processor requests to write a Cache
block

3. BusRd: Snooped request that indicates there is a read
request to a Cache block requested by another processor

4. BusRdX: Snooped request that indicates there is a write
request to a Cache block requested by another processor
that doesn't already have the block.

5. BusUpgr: Snooped request that indicates that there is a
write request to a Cache block requested by another
processor that already has that cache block residing in
its own cache.

6. Flush: Snooped request that indicates that an entire cache
block is written back to the main memory by another
processor.

7. FlushOpt: Snooped request that indicates that an entire
cache block is posted on the bus in order to supply it to
another processor (Cache to Cache transfers).

https://en.wikipedia.org/wiki/MESI_protocol

https://en.wikipedia.org/wiki/MESI_protocol

cc-NUMA
Old machines used dance hall architectures

- Any CPU can “dance with” any memory equally

An alternative: Non-Uniform Memory Access (NUMA)

- Each CPU has fast access to some “close” memory

- Slower to access memory that is farther away

- Use a directory to keep track of who is caching what

Originally for esoteric machines with many CPUs

- But AMD and then intel integrated memory controller into CPU

- Faster to access memory controlled by the local socket (or even local die in a multi-chip module)

cc-NUMA = cache-coherent NUMA

- Rarely see non-cache-coherent NUMA (BBN Butterfly 1, Cray T3D)

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

Real World Coherence Costs

See [David] for a great reference. Xeon results:

- 3 cycle L1, 11 cycle L2, 44 cycle LLC, 355 cycle local
RAM

 If another core in same socket holds line in
modified state:

- load: 109 cycles (LLC + 65)

- store: 115 cycles (LLC + 71)

- atomic CAS: 120 cycles (LLC + 76)

 LLC: non-inclusive last-level cache

 If a core in a different socket holds line in
modified state:

- NUMA load: 289 cycles

- NUMA store: 320 cycles

- NUMA atomic CAS: 324 cycles

But only a partial picture

● Could be faster because of out-of-order execution
● Could be slower if interconnect contention or multiple hops

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/sched/readings/david-synchronization.pdf
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

NUMA and spinlocks

Test-and-set spinlock has several advantages

- Simple to implement and understand

- One memory location for arbitrarily many CPUs

But also has disadvantages

- Lots of traffic over memory interconnect (especially
w. > 1 spinner)

- Not necessarily fair (lacks bounded waiting)

- Even less fair on a NUMA machine

Better alternative: Test-and-test-and-set Lock

● TTAS performs much better than TAS
● Neither approaches ideal

https://www.scs.stanford.edu/23wi-cs212/notes/synchronizatio
n1.pdf

t
i
m
e

threads
https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf
https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt

introduce waiting: Backoff lock

Good

● Easy to implement
● Beats TTAS lock

Bad

● Almost same
● Must choose parameters carefully
● Not portable across platforms

https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt

https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt

NUMA and spinlocks

Test-and-set spinlock has several advantages

- Simple to implement and understand

- One memory location for arbitrarily many CPUs

But also has disadvantages

- Lots of traffic over memory interconnect (especially
w. > 1 spinner)

- Not necessarily fair (lacks bounded waiting)

- Even less fair on a NUMA machine

Better alternative: Test-and-test-and-set Lock

● TTAS performs much better than TAS
● Neither approaches ideal

➔ Idea 1: Avoid spinlocks altogether (lock free data structures)
➔ Idea 2: Reduce interconnect traffic with better spinlocks

◆ Design lock that spins only on local memory
◆ Also gives better fairness

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

Useful macros
https://en.cppreference.com/w/c/atomic/memory_order

Atomic compare and swap: CAS (mem, old, new)

● If *mem == old,
■ then swap *mem↔new
■ and return true,

● else false
● On x86, can implement using locked cmpxchg instruction
● In C11, use atomic_compare_exchange_strong

(note: C atomics version sets old = *mem if *mem != old)

Atomic swap: XCHG (mem, new)

● Atomically exchanges *mem↔new
● Implement w. C11 atomic_exchange, or xchg on x86

Atomic fetch and add: FADD (mem, val)

● Atomically sets *mem += val and returns
old value of *mem

● Implement w. C11 atomic_fetch_add, lock
add on x86

Atomic fetch and subtract: FSUB (mem, val)

Note: atomics return previous value (like x++,
not ++x)

All behave like sequentially consistent fences

● In C11, weaker _explicit versions take a
memory_order argument

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://en.cppreference.com/w/c/atomic/memory_order
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

MCS Lock

Build a better spinlock

• Lock designed by
Mellor-Crummey and Scott

- Goal:

● reduce bus traffic on cc
machines,

● improve fairness

Each CPU has a qnode structure in local memory

typedef struct qnode {

 _Atomic(struct qnode *) next;

 atomic_bool locked;

} qnode;

● Local can mean local memory in NUMA machine
● Or just its own cache line that gets cached in exclusive

mode

While waiting, spin on your local locked flag

A lock is a qnode pointer: typedef _Atomic (qnode *) lock;

● Construct list of CPUs holding or waiting for lock
● lock itself points to tail of list list (or NULL when unlocked)

see also pg.151 in https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt, there are also clh lock etc.

https://www.cs.rice.edu/~johnmc/papers/tocs91.pdf
https://booksite.elsevier.com/9780123973375/powerpoint/chapter_07.ppt

MCS acquire

● If unlocked, L is NULL
● If locked, no waiters, L is owner’s qnode
● If waiters, *L is tail of waiter list:

acquire(lock *L, qnode *I) {
 I->next = NULL;
 qnode *predecessor = I;
 XCHG(*L, predecessor);
 if (predecessor != NULL) {
 I->locked = true;
 predecessor->next = I;
 while (I->locked)
 ;
 }
}

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

MCS acquire

● If unlocked, L is NULL
● If locked, no waiters, L is owner’s qnode
● If waiters, *L is tail of waiter list:

acquire(lock *L, qnode *I) {
 I->next = NULL;
 qnode *predecessor = I;
 XCHG(*L, predecessor);
 if (predecessor != NULL) {
 I->locked = true;
 predecessor->next = I;
 while (I->locked)
 ;
 }
}

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

MCS acquire

● If unlocked, L is NULL
● If locked, no waiters, L is owner’s qnode
● If waiters, *L is tail of waiter list:

acquire(lock *L, qnode *I) {
 I->next = NULL;
 qnode *predecessor = I;
 XCHG(*L, predecessor);
 if (predecessor != NULL) {
 I->locked = true;
 predecessor->next = I;
 while (I->locked)
 ;
 }
}

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

MCS acquire

● If unlocked, L is NULL
● If locked, no waiters, L is owner’s qnode
● If waiters, *L is tail of waiter list:

acquire(lock *L, qnode *I) {
 I->next = NULL;
 qnode *predecessor = I;
 XCHG(*L, predecessor);
 if (predecessor != NULL) {
 I->locked = true;
 predecessor->next = I;
 while (I->locked)
 ;
 }
}

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

MCS Release with CAS

release(lock *L, qnode *I) {

 if (!I->next)

 if (CAS(*L, I, NULL)) return;

 while (!I->next)

 ;

 I->next->locked = false;

}

If I->next NULL and *L == I

● No one else is waiting for lock, OK to set
*L = NULL

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

MCS Release with CAS

release(lock *L, qnode *I) {

 if (!I->next)

 if (CAS(*L, I, NULL)) return;

 while (!I->next)

 ;

 I->next->locked = false;

}

If I->next NULL and *L != I

● Another thread is in the middle of acquire
● Just wait for I->next to be non-NULL

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

MCS Release with CAS

release(lock *L, qnode *I) {

 if (!I->next)

 if (CAS(*L, I, NULL)) return;

 while (!I->next)

 ;

 I->next->locked = false;

}

If I->next is non-NULL

● I->next oldest waiter, wake up with I->next->locked = false

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

MCS Release without CAS

release(lock *L, qnode *I) {

 if (I->next)

 I->next->locked = false;

 else {

 qnode *old_tail = NULL;

 XCHG(*L, old_tail);

 if (old_tail == I) return;

 /* old_tail != I? CAS would have failed, so undo XCHG */

 qnode *userper = old_tail;

 XCHG(*L, userper);

 while (I->next == NULL)

 ;

 if (userper) /* someone changed *L between 2 XCHGs */

 userper->next = I->next;

 else

 I->next->locked = false;

 }

}

1. Atomically swap NULL into *L
● If old value of *L was I, no waiters

and we are done
2. Atomically swap old *L value back
into *L

● If *L unchanged, same effect as
CAS

Otherwise,
● Some “userper” attempted to

acquire lock between 1 and 2
● Because *L was NULL, the

userper succeeded (May be
followed by zero or more waiters)

● Graft old list of waiters on to end
of new last waiter (Sacrifice small
amount of fairness, but still safe)

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

Lock “Free”
Multithreading:

source:
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization
1.pdf

Atomic operations

Read-modify-write (RMW) atomic
instructions

Memory barriers (see
memory-barriers.txt)

In Linux kernel (mb(), smp_mb(),
etc.),

assembly instruction asm volatile
("mfence" : : : "memory")

C11 atomic library, Linux system
calls

RCU

Non-blocking synchronization

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf
https://www.kernel.org/doc/Documentation/memory-barriers.txt

Acquire/release semantics

Passing information reliably between threads about a variable.

‒ Ideal in producer/consumer type situations (pairing!!).

‒ After an ACQUIRE on a given variable, all memory accesses preceding any prior RELEASE
on that same variable are guaranteed to be visible.

‒ All accesses of all previous critical sections for that variable are guaranteed to have
completed.

‒ C++11's memory_order_acquire, memory_order_release and memory_order_relaxed
(see Memory barriers in C).

https://elinux.org/images/a/ab/Bueso.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf
https://elinux.org/images/a/ab/Bueso.pdf

Spinlocks with release/acquire semantics and atomic ops spinlocks

https://elinux.org/images/a/ab/Bueso.pdf

https://elinux.org/images/a/ab/Bueso.pdf

Recall: Producer/Consumer

/* PRODUCER */

for (;;) {

 item *nextProduced = produce_item();

 mutex_lock(&mutex);

 while (count == BUF_SIZE)

 cond_wait(&nonfull, &mutex);

 buffer[in] = nextProduced;

 in = (in + 1) % BUF_SIZE;

 count++;

 cond_signal(&nonempty);

 mutex_unlock(&mutex);

}

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

/* CONSUMER */

for (;;) {

 mutex_lock(&mutex);

 while (count == 0)

 cond_wait(&nonempty, &mutex);

 nextConsumed = buffer[out];

 out = (out + 1) % BUF_SIZE;

 count--;

 cond_signal(&nonfull);

 mutex_unlock(&mutex);

 consume_item(nextConsumed);

}

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

Eliminating Locks

One use of locks is to coordinate multiple updates of single piece of state

How to remove locks here?

● - Factor state so that each variable only has a single writer

In Producer/Consumer example, Assume one producer, one consumer

Why do we need count variable, written by both?

● To detect buffer full/empty

Have producer write in, consumer write out (both _Atomic)

- Use in/out to detect buffer state

- But note next example busy-waits, which is less good
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

Lock-free producer/consumer

atomic_int in, out;

void producer(void *ignored) {

 for (;;) {

 item *nextProduced = produce_item();

 while (((in + 1) % BUF_SIZE) == out)

 thread_yield();

 buffer[in] = nextProduced;

 in = (in + 1) % BUF_SIZE;

 }

}

void consumer(void *ignored) {

 for (;;) {

 while (in == out)

thread_yield();

 nextConsumed = buffer[out];

 out = (out + 1) % BUF_SIZE;

 consume_item(nextConsumed);

 }

}

Note fences not needed because no relaxed atomics
example busy-waits, which is less good

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

Version with relaxed atomics

void producer(void *ignored) {

 for (;;) {

 item *nextProduced = produce_item();

 int slot = atomic_load_explicit(&in, memory_order_relaxed);

 int next = (slot + 1) % BUF_SIZE;

 while (atomic_load_explicit(&out, memory_order_acquire) ==

 next) // Could you use relaxed? ^^^^^^^

 thread_yield();

 buffer[slot] = nextProduced;

 atomic_store_explicit(&in, next, memory_order_release);

 }

}

void consumer(void *ignored) {

 // Use memory_order_acquire to load in (for latest buffer[myin])

 // Use memory_order_release to store out

}

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

Non-blocking synchronization
Design algorithm to avoid critical sections

● Any threads can make progress if other threads are preempted
● Which wouldn’t be the case if preempted thread held a lock

Requires that hardware provide the right kind of atomics

● Simple test-and-set is insufficient
● Atomic compare and swap is good:

○ CAS (mem, old, new) If *mem == old, then swap *mem←→new and return true, else false

Can implement many common data structures

● Stacks, queues, even hash tables

Can implement any algorithm on right hardware

● Need operation such as atomic compare and swap (has property called consensus number =
∞ [Herlihy])

● Entire kernels have been written without locks [Greenwald]

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/sched/readings/wait-free.pdf
https://www.scs.stanford.edu/23wi-cs212/sched/readings/cache-kernel-dcas.pdf
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

Example non-blocking stack

struct item {
 /* data */
 _Atomic(struct item *) next;
};
typedef _Atomic(struct item *) stack_t;
void atomic_push(stack_t *stack, item *i) {
 do {
 i->next = *stack;
 } while (!CAS(stack, i->next, i));
}

item *atomic_pop(stack_t *stack) {
 item *i;
 do {
 i = *stack;
 } while (!CAS(stack, i, i->next));
 return i;
}

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

Wait-free stack issues

“ABA” race in pop if other thread pops, re-pushes i
● - Can be solved by

○ counters
○ or hazard pointers to delay re-use

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

“Benign” races

Could also eliminate locks by having race conditions

● Maybe you think you care more about speed than correctness
○ ++hits; /* each time someone accesses web site */

● Maybe you think you can get away with the race
○ not really: https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

if (!initialized) {

 lock(m);

 if (!initialized) {

 initialize();

 atomic_thread_fence(memory_order_release); /* why? */

 initialized = 1;

 }

 unlock(m);

}

But don’t do this [Vyukov], [Boehm]! Not benign at all
● Again, UB really bad! Like user-after free or array overflow bad
● If needed for efficiency, use relaxed-memory-order atomics

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.aristeia.com/Papers/DDJ_Jul_Aug_2004_revised.pdf
https://web.archive.org/web/20150621231520/https://software.intel.com/en-us/blogs/2013/01/06/benign-data-races-what-could-possibly-go-wrong?page=1
https://www.usenix.org/legacy/event/hotpar11/tech/final_files/Boehm.pdf
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

Read Copy Update(RCU)
 [McKenney, see also slides Read-Copy Update (RCU), What is RCU,
Fundamentally? [LWN.net], What is RCU? -- "Read, Copy, Update" — The Linux
Kernel documentation

● achieves scalability improvements by
allowing reads to occur concurrently with
updates.

● supports concurrency between
○ a single updater
○ and multiple readers.

The basic idea behind RCU is to split updates into
"removal" and "reclamation" phases

● the removal phase runs concurrently with readers
● the typical RCU update sequence goes

something like the following:
○ Remove pointers to a data structure, so that

subsequent readers cannot gain a reference to it.
○ Wait for all previous readers to complete their

RCU read-side critical sections (lightweight
synchronization).

■ we can separate reclamation phase into
another thread

○ At this point, there cannot be any readers who hold
references to the data structure, so it now may
safely be reclaimed (e.g., kfree()d).

http://www.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf
https://www.cs.unc.edu/~porter/courses/cse506/f12/slides/rcu.pdf
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://www.kernel.org/doc/html/next/RCU/whatisRCU.html
https://www.kernel.org/doc/html/next/RCU/whatisRCU.html

Read-copy update

Some data is read way more often than written

● Routing tables consulted for each forwarded packet
● Data maps in system with 100+ disks (updated on disk failure)

Optimize for the common case of reading without lock

● E.g., global variable: _Atomic(routing_table *) rt;
● use without lock

#define RELAXED(var) atomic_load_explicit(&(var), memory_order_relaxed)
/* ... */
route = lookup(RELAXED(rt), destination);

Update by making copy, swapping pointer

/* update mutex held here, serializing updates */
routing_table *newrt = copy_routing_table(rt);
update_routing_table(newrt);
atomic_store_explicit(&rt, newrt, memory_order_release);

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

Is RCU really safe?

Consider the use of global rt with no fences:

lookup(RELAXED(rt), route);

Could a CPU read new pointer but then old contents of *rt?

● Yes on alpha, No on all other existing architectures

When can you free memory of old routing table?

● When you are guaranteed no one is using it—how to determine?
○ for more info see Read-Copy Update (RCU)

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

https://www.cs.unc.edu/~porter/courses/cse506/f12/slides/rcu.pdf
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization1.pdf

Deadlock problem

mutex_t m1, m2;

void p1(void *ignored) {

 lock(m1);

 lock(m2);

 /* critical section */

 unlock(m2);

 unlock(m1);

}

void p2(void *ignored) {

 lock(m2);

 lock(m1);

 /* critical section */

 unlock(m1);

 unlock(m2);

}

This program can cease to make progress – how?
Can you have deadlock w/o mutexes?

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

Deadlock conditions

1. Limited access (mutual exclusion):

- Resource can only be shared with finite users

2. No preemption:

- Once resource granted, cannot be taken away

3. Multiple independent requests (hold and
wait):

- Don’t ask all at once (wait for next resource
while holding current one)

4. Circularity in graph of requests

All of 1–4 necessary for deadlock to occur

Two approaches to dealing with deadlock:

- Pro-active: prevention

- Reactive: detection + corrective action

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

Prevent by eliminating one condition

1. Limited access (mutual exclusion):

- Resource can only be shared with finite users

2. No preemption:

- Once resource granted, cannot be taken away

3. Multiple independent requests (hold and
wait):

- Don’t ask all at once (wait for next resource
while holding current one)

4. Circularity in graph of requests

● Single lock for entire system:
(problems?)

● Partial ordering of resources (next)

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

Detecting deadlocks
● Static approaches (hard)
● Dynamically, program grinds to a halt

○ Threads package can diagnose by keeping track of locks held:

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

Fixing and debugging deadlocks

Reboot system / restart application

Examine hung process with debugger

Threads package can deduce partial order

● - For each lock acquired, order with other
locks held

● - If cycle occurs, abort with error
● - Detects potential deadlocks even if they

do not occur

 Or use transactions. . .

● - Another paradigm for handling
concurrency

● - Often provided by databases, but some
OSes use them

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

Transactions

A transaction is a collection of the properties

● Atomicity – all or none of actions happen
● Consistency – T leaves data in valid state
● Isolation – T’s actions all appear to happen before

or after every
● other transaction
● Durability – T’s effects will survive reboots

ACID a set of properties of database transactions intended to
guarantee data validity despite errors, power failures, and other
mishaps

Transactions typically executed concurrently

● But isolation means must appear not
to

● Must roll-back transactions that use
others’ state

● Means you have to record all changes
to undo them

★ When deadlock detected just abort a
transaction

○ Breaks the dependency cycle

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://en.wikipedia.org/wiki/Database_transaction
https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

Transactional memory
Some modern processors support transactional memory

★ a promising alternative to lock-based
synchronization mechanisms

○ Non-blocking

Transactional Synchronization Extensions (TSX)
[intel1§16]

- xbegin abort_handler – begins a transaction

- xend – commit a transaction

- xabort $code – abort transaction with 8-bit code

- Note: nested transactions okay (also xtest tests if in
transaction)

During transaction, processor tracks accessed
memory

● Keeps read-set and write-set of cache lines
● Nothing gets written back to memory during

transaction
● Transaction aborts (at xend or earlier) if any

conflicts
● Otherwise, all dirty cache lines are “written”

atomically
● (in practice switch to non-transactional M

state of MESI)

 TM system ensure atomicity by detecting and
resolving any conflict arising between concurrent
transactions

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://en.wikipedia.org/wiki/Transactional_memory#Available_implementations

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf
https://en.wikipedia.org/wiki/Transactional_memory#Available_implementations

Using transactional memory

Idea: Use to get “free” fine-grained locking on a
hash table

● E.g., concurrent inserts that don’t touch
same buckets are okay

○ Automatic Mutual Exclusion method

Can also use to poll for one of many
asynchronous events

● Start transaction
● Fill cache with values to which you want to

see changes
● Loop until a write causes your transaction

to abort

Note: Transactions are never guaranteed to
commit

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

Hardware lock elision (HLE)

concurrently executes lock critical sections
as hardware transactions, but fallbacks to
the original sequential lock fallback path
when some hardware transaction fails.

● Begin a transaction when you acquire lock
● Other CPUs won’t see lock acquired, can

also enter critical section
● Okay not to have mutual exclusion when

no memory conflicts!
● On conflict, abort and restart without

transaction, thereby visibly acquiring lock
(and aborting other concurrent
transactions)

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

Intel support:

● Use xacquire prefix before xchgl (used for
test and set)

● Use xrelease prefix before movl that
releases lock

● Prefixes chosen to be noops on older
CPUs (binary compatibility)

Hash table example:

● - Use xacquire xchgl in table-wide
test-and-set spinlock

● - Works correctly on older CPUs (with
coarse-grained lock)

● - Allows safe concurrent accesses on
newer CPUs!

https://www.scs.stanford.edu/23wi-cs212/notes/synchronization2.pdf

