
Synchronization
Intro

● This week
○ Background
○ The Critical-Section

Problem
○ Peterson’s Solution
○ Hardware Support for

Synchronization
● C11 Atomic operations library

○ Atomic operations library
○ memory_order -

cppreference.com
○ slides: Memory barriers in

C
○ High level software

solutions
■ Mutex Locks
■ Semaphores
■ Monitors

https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic/memory_order
https://en.cppreference.com/w/c/atomic/memory_order
https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf
https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

Synchronization Outline
● This week

○ Background
○ The Critical-Section Problem
○ Peterson’s Solution
○ Hardware Support for

Synchronization
● C11 Atomic operations library

○ Atomic operations library
○ memory_order -

cppreference.com
○ slides: Memory barriers in C
○ High level software solutions

■ Mutex Locks
■ Semaphores
■ Monitors

Next week

● Implementation of locks
○ kernel space
○ user level implementation

● Cache coherence
● Lock “Free” Multithreading

○ memory barriers
● Lock free data structures

○ RCU
● transactions

Next next week

● Review and summary of
synchronization

https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic/memory_order
https://en.cppreference.com/w/c/atomic/memory_order
https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

void *producer(void *data){

 while (1) {

 /* produce an item in next produced */

 while (count == BUFFER_SIZE)

 ; /* do nothing */

 buffer[in] = produced;

 in = (in + 1) % BUFFER_SIZE;

 count++;

 }

}

void *consumer(void *data){

 while (1){

 while (count == 0)

 ; /* do nothing */

 consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 count--;

 /* consume the item in next consumed

*/

 }

}

#include <stdio.h> #include <pthread.h>

#define NRUN 100000

int total = 0;

void *transaction(void *data){

 for (int i = 0; i < NRUN; i++){

 total++;

 }

}

int main(int argc, char **argv){

 pthread_t thread_id[2];

 pthread_create(&thread_id[0], NULL, transaction, NULL);

 pthread_create(&thread_id[1], NULL, transaction, NULL);

 pthread_join(thread_id[0], NULL);

 pthread_join(thread_id[1], NULL);

 printf("total- expected:%d, actual:%d\n", 2 * NRUN, total);

 return 0;

}

In a time-shared system, the exact instruction
execution order cannot be predicted!

Race Condition

● Processes P0 and P1 are creating child processes using the fork() system call

● Race condition on kernel variable next_available_pid which represents the next
available process identifier (pid)

● Unless there is a mechanism to prevent P0 and P1 from accessing the variable
next_available_pid the same pid could be assigned to two different processes!

Critical Section Problem

● Consider system of n processes {p0, p1, … pn-1}

● Each process has critical section segment of code

○ Process may be changing common variables, updating table, writing file, etc.

○ When one process in critical section, no other may be in its critical section

● Critical section problem is to design protocol to solve this

● Each process must ask permission to enter critical section in entry
section, may follow critical section with exit section, then remainder
section

Critical Section

● General structure of process Pi

Requirements for solution to critical-section problem

1. Mutual Exclusion
○ If process Pi is executing in its critical section, then

no other processes can be executing in their critical
sections

2. Progress
○ If no process is executing in its critical section and

there exist some processes that wish to enter their
critical section, then the selection of the process that
will enter the critical section next cannot be
postponed indefinitely

3. Bounded Waiting
○ A bound must exist on the number of times that other

processes are allowed to enter their critical sections
after a process has made a request to enter its
critical section and before that request is granted

Assumptions:
● Assume that each

process executes at a
nonzero speed

● No assumption
concerning relative
speed of the n processes

Hardware solutions:
Interrupt-based solution ● Will this solve the problem?

○ What if the critical section-code
runs for an hour?

○ Can some processes starve

■ never enter their critical
section.

○ What if there are two CPUs?

● Entry section: disable interrupts

● Exit section: enable interrupts

Software
Solutions

Try-1:
● Two process solution
● Assume that the load and

store machine-language
instructions are atomic;
○ that is, cannot be interrupted

● The two processes share one
variable:
○ int turn;

■ indicates whose turn it is to
enter the critical section

■ initialized to i

Try-1: (strict alternation)

// P0

while (true){

 while (turn != 0) {

 ;

 } // P1’s turn

 // MY TURN

 /* critical section */

 turn = 1;

 /* remainder section */

}

// P1

while (true){

 while (turn != 1) {

 ;

 } // P0’s turn

 // MY TURN

 /* critical section */

 turn = 0;

 /* remainder section */

}

https://phoenix.goucher.edu/~kelliher/cs42/sep27.html

https://phoenix.goucher.edu/~kelliher/cs42/sep27.html

Correctness of the Try-1

● Mutual exclusion is preserved
○ Pi enters critical section only if:

■ turn = i
■ and turn cannot be both 0 and 1 at the same time

● What about the Progress requirement?

○ does not guarantee progress: enforces strict alternation of processes entering CS.
○ e.g.; P0 in remainder section,

■ P1 executes its critical section,
■ it changes the turn variable to 0.

■ P1 finishes its remainder section, now it has to wait P0’s remainder section

● What about the Bounded-waiting requirement?

○ Bounded waiting violated,

■ one process terminates while it is its turn

try-2: Remove strict alternation from try-1

// P0

while (true){

 while (flag[1]) {// P1 in cs

 ;

 }

 // MY TURN

 flag[0] = true;

 /* critical section */

 flag[0] = false;

 /* remainder section */

}

// P1

while (true)

{

 while (flag[0]){// P0 in cs

 ;

 }

 // MY TURN

 flag[1] = true;

 /* critical section */

 flag[1] = false;

 /* remainder section */

}

/*flag[i] indicates that Pi is in its critical section*/

int flag[2] = {false, false};

Correctness of try-2

● Mutual exclusion is violated
○ P0 exits while loop, then context switch.

○ P1 exits while loop,

○ both can enter critical section

● What about the Progress requirement?
○ OK

● What about the Bounded-waiting requirement?

○ OK

try-3: Restore mutual exclusion in try-2

// P0

while (true){

 // wants to enter

 flag[0] = true;

 while (flag[1]){// P1 in cs

 ;

 }

 /* critical section */

 flag[0] = false;

 /* remainder section */

}

// P1

while (true){

 // wants to enter

 flag[1] = true;

 while (flag[0]){// P0 in cs

 ;

 }

 /* critical section */

 flag[1] = false;

 /* remainder section */

}

/*flag[i] indicates that Pi wants to enter critical section*/

int flag[2] = {false, false};

Correctness of try-3

● Mutual exclusion is guaranteed.

● What about the Progress requirement?
○ violated

■ both proces can set flags, then deadlock on the while-loop

● What about the Bounded-waiting requirement?

○ violated, infinite loop.

try-4: attempt to remove deadlock

// P0

while (true){

 // wants to enter

 flag[0] = true;

 while (flag[1]) {

 flag[0] = false;

 delay();

 flag[0] = true;

 }

 /* critical section */

 flag[0] = false;

 /* remainder section */

}

// P1

while (true){

 // wants to enter

 flag[1] = true;

 while (flag[0]) {

 flag[1] = false;

 delay();

 flag[1] = true;

 }

 /* critical section */

 flag[1] = false;

 /* remainder section */

}

Progress is still violated!
• both proces can

“dance” in the
while-loop

Bounded waiting violated

/*flag[i] indicates that Pi wants to enter critical section*/

int flag[2] = {false, false};

Peterson’s solution

// P0

while (true){

 // wants to enter

 flag[0] = true;

 turn = 1;

 while (flag[1] && turn == 1){

 ;

 }

 /* critical section */

 flag[0] = false;

 /* remainder section */

}

// P1

while (true){

 // wants to enter

 flag[1] = true;

 turn = 0;

 while (flag[0] && turn == 0) {

 ;

 }

 /* critical section */

 flag[1] = false;

 /* remainder section */

}

int flag[2] = {false, false}; /*flag[i] indicates that Pi wants to enter critical section (it’s

ready)*/

int turn = 0; /*indicates which process has the priority (lock) to enter in its CS*/

Algorithm for Process Pi

while (true){

flag[i] = true;
turn = j;
while (flag[j] && turn = = j)

;

 /* critical section */

flag[i] = false;

/* remainder section */

}
for multiple processes, see Lamport's bakery algorithm - Wikipedia,
https://www.javatpoint.com/lamports-bakery-algorithm

https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm
https://www.javatpoint.com/lamports-bakery-algorithm

Correctness of Peterson’s Solution

● Provable that the three CS requirement are met:

 1. Mutual exclusion is preserved

 Pi enters CS only if:

 either flag[j] = false or turn = i

 2. Progress requirement is satisfied

 3. Bounded-waiting requirement is met

Peterson’s Solution and Modern Architecture

● Although useful for demonstrating an
algorithm, Peterson’s Solution is not
guaranteed to work on modern
architectures.

○ To improve performance, processors and/or
compilers may reorder operations that have
no dependencies

● Understanding why it will not work is useful
for better understanding race conditions.

● For single-threaded this is ok as the result
will always be the same.

● For multithreaded the reordering may
produce inconsistent or unexpected results!

Modern Architecture Example

● Two threads share the data:
 boolean flag = false;
 int x = 0;

● Thread 1 performs
 while (!flag)
 ;
 print x

● Thread 2 performs
 x = 100;
 flag = true

● What is the expected output?

 100

Modern Architecture Example (Cont.)

● However, since the variables flag and x are independent of each
other, the instructions:

 flag = true;
 x = 100;

 for Thread 2 may be reordered
● If this occurs, the output may be 0!

Peterson’s Solution Revisited

● The effects of instruction reordering in Peterson’s Solution

● This allows both processes to be in their critical section at the same time!

● To ensure that Peterson’s solution will work correctly on modern computer
architecture we must use Memory Barrier.

Hardware
Support for

Synchronization

Memory Barrier

● Memory model are the memory guarantees a computer architecture
makes to application programs.

● Memory models may be either:

○ Strongly ordered – where a memory modification of one processor is immediately
visible to all other processors.

○ Weakly ordered – where a memory modification of one processor may not be
immediately visible to all other processors.

● A memory barrier is an instruction that forces any change in memory
to be propagated (made visible) to all other processors.

see linux memory barriers: Linux kernel documentation on memory
barriers
An introduction to lockless algorithms [LWN.net]

https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://lwn.net/Articles/844224/

Memory Barrier Instructions

● When a memory barrier instruction is performed, the system ensures
that all loads and stores are completed before any subsequent load or
store operations are performed.

● Therefore, even if instructions were reordered, the memory barrier
ensures that the store operations are completed in memory and visible
to other processors before future load or store operations are
performed.

Memory Barrier Example

● Returning to the example of slides 6.17 - 6.18

● We could add a memory barrier to the following instructions to ensure Thread 1 outputs 100:

● Thread 1 now performs
 while (!flag)
 memory_barrier();

 print x

● Thread 2 now performs
 x = 100;
 memory_barrier();
 flag = true

● For Thread 1 we are guaranteed that that the value of flag is loaded before the value of x.

● For Thread 2 we ensure that the assignment to x occurs before the assignment flag.

Synchronization Hardware

● Many systems provide hardware support for implementing the critical
section code.

● Uniprocessors – could disable interrupts
○ Currently running code would execute without preemption

○ Generally too inefficient on multiprocessor systems
■ Operating systems using this not broadly scalable

● We will look at two forms of hardware support:

1. Hardware instructions

2. Atomic variables

Hardware Instructions

● Special hardware instructions that allow us to either test-and-modify
the content of a word, or to swap the contents of two words atomically
(uninterruptedly.)

○ Test-and-Set instruction

○ Compare-and-Swap instruction

The test_and_set Instruction

● Definition

 boolean test_and_set (boolean *lock) {
 boolean rv = *lock;

 *lock = true;

 return rv:

 }

● Properties

○ Executed atomically

○ Returns the original value of passed parameter

○ Set the new value of passed parameter to true

Mutual Exclusion with test_and_set

volatile does not guarantee r/w committed to
memory(need memory barrier)

volatile int lock = 0;

void critical() {
 while (test_and_set(&lock) == 1);/*spinlock*/

 /* critical section */

 lock = 0; /* release lock when finished CS*
}

/* Spin lock: loop forever
until we get the lock;
we know the lock was
successfully obtained after
exiting this while loop because
the
test_and_set() function locks
the lock and returns the
previous lock
value.
If the previous lock value was
1 then the lock was **already**
locked by another thread or
process. Once the previous lock
value
was 0, however, then it
indicates the lock was **not**
locked before we
locked it, but now it **is**
locked because we locked it,
indicating
we own the lock.
*/Test-and-set - Wikipedia

https://en.wikipedia.org/wiki/Test-and-set

The compare_and_swap Instruction
● Definition
 int compare_and_swap(int *value, int expected, int new_value) {

 int temp = *value;
 if (*value == expected)

 *value = new_value;

 return temp;

 }

● Properties
○ Executed atomically

○ Returns the original value of passed parameter value

○ Set the variable value the value of the passed parameter new_value but only if
*value == expected (old value) is true.

■ That is, the swap takes place only under this condition.

may be updated between calls: ABA problem

Solution Using test_and_set()

● Shared boolean variable lock, initialized to 0
● Solution:
 while (1){

 while (test_and_set(&lock))

 ; /* do nothing */

 /* critical section */

 lock = 0;

 /* remainder section */

 }

● Does it solve the critical-section problem?

Solution using compare_and_swap

● Shared integer lock initialized to 0;
● Solution:
 while (true){

 while (compare_and_swap(&lock, 0, 1) != 0)

 ; /* do nothing */

 /* critical section */

 lock = 0;

 /* remainder section */

 }

● Does it solve the critical-section problem?

★ This algorithm satisfies the
mutual-exclusion
requirement,

★ it does not satisfy the
bounded-waiting requirement.

○ the same thread may
get the lock infinitely

Bounded-waiting with compare-and-swap

while (true) {

 waiting[i] = true;

 key = 1;

 while (waiting[i] && key == 1) { /*enter cs if waiting[i] == false or key == 0.*/

 key = compare_and_swap(&lock, 0, 1);

 }

 waiting[i] = false;

 /* critical section */

 j = (i + 1) % n;

 while ((j != i) && !waiting[j]) /*find the next waiting[j] == true*/

 j = (j + 1) % n;

 if (j == i)

 lock = 0;

 else

 waiting[j] = false;

 /* remainder section */

}

Atomic Variables

● Typically, instructions such as compare-and-swap are used as building
blocks for other synchronization tools.

● One tool is an atomic variable that provides atomic (uninterruptible) updates
on basic data types such as integers and booleans.

● For example:

○ Let sequence be an atomic variable

○ Let increment() be operation on the atomic variable sequence

○ The Command:

 increment(&sequence);
 ensures sequence is incremented without interruption:

Atomic Variables

● The increment() function can be implemented as follows:

void increment(atomic_int *v){
int temp;
do {

temp = *v;
}
while (temp != (compare_and_swap(v,temp,temp+1));
}

6.55 Built-in Functions for Memory Model Aware Atomic Operations
Atomic operations library - cppreference.com

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html#g_t_005f_005fatomic-Builtins
https://en.cppreference.com/w/c/atomic

C atomic library

6.55 Built-in Functions for Memory Model Aware Atomic Operations
Atomic operations library - cppreference.com

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html#g_t_005f_005fatomic-Builtins
https://en.cppreference.com/w/c/atomic

Memory
reordering-memor

y barriers
Memory Barriers

Acquire and Release Semantics

The problem

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

Memory Reordering Caught in the Act

https://preshing.com/20120515/memory-reordering-caught-in-the-act/

sem_t beginSema1;
sem_t endSema;

int X, Y;
int r1, r2;

void *thread1Func(void *param){
 MersenneTwister random(1); // Initialize random number generator
 for (;;) // Loop indefinitely
 {
 sem_wait(&beginSema1); // Wait for signal from main thread
 while (random.integer() % 8 != 0) {} // Add a short, random delay

 // ----- THE TRANSACTION! -----
 X = 1;
 asm volatile("" ::: "memory"); // Prevent compiler reordering
 r1 = Y;

 sem_post(&endSema); // Notify transaction complete
 }
 return NULL; // Never returns
};

Memory Reordering Caught in the Act

$ gcc -O2 -c -S -masm=intel ordering.cpp
$ cat ordering.s
 ...
 mov DWORD PTR _X, 1
 mov eax, DWORD PTR _Y
 mov DWORD PTR _r1, eax
 ...

https://preshing.com/20120515/memory-reordering-caught-in-the-act/

preventing with store/load barrier

Memory Reordering Caught in the Act

 for (;;) // Loop indefinitely
 {
 sem_wait(&beginSema1); // Wait for signal from main thread
 while (random.integer() % 8 != 0) {} // Add a short, random delay

 // ----- THE TRANSACTION! -----
 X = 1;
 asm volatile("mfence" ::: "memory"); // Prevent memory reordering
 r1 = Y;

 sem_post(&endSema); // Notify transaction complete
 }

 ...
 mov DWORD PTR _X, 1
 mfence
 mov eax, DWORD PTR _Y
 mov DWORD PTR _r1, eax
 ...

https://preshing.com/20120515/memory-reordering-caught-in-the-act/

Memory barriers (jointly with atomic operations) are intended to make data
changes visible in concurrent threads.

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

C API

Memory barrier can be issued with atomic operations

memory_order - cppreference.com
enum memory_order
{
 memory_order_relaxed,
 memory_order_consume,
 memory_order_acquire,
 memory_order_release,
 memory_order_acq_rel,
 memory_order_seq_cst
};

https://en.cppreference.com/w/c/atomic/memory_order

relaxed memory barrier

it guarantees atomicity but does not impose any
ordering constraint.

// Thread 1:
r1 = atomic_load_explicit(y, memory_order_relaxed); // A
atomic_store_explicit(x, r1, memory_order_relaxed); // B
// Thread 2:
r2 = atomic_load_explicit(x, memory_order_relaxed); // C
atomic_store_explicit(y, 42, memory_order_relaxed); // D

//D can be before A
https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

http://en.cppreference.com/w/c/atomic/atomic_load
http://en.cppreference.com/w/c/atomic/atomic_store
http://en.cppreference.com/w/c/atomic/atomic_load
http://en.cppreference.com/w/c/atomic/atomic_store
https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

release memory order

Used with a store operation

● not valid with load

In the same thread:

Loads and stores before Release can not be
reordered after Release.

Loads and stores after Release can be
reordered before Release.

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

release is meaningless alone

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

Acquire memory order

Used with a load operation

Loads and stores after Acquire can not be
reordered before Acquire.

Loads and stores before Acquire can be
reordered after Acquire.

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

Not same as read memory barrier

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

Meaningless alone!

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

Release-acquire model

Acquire must be always paired with Release (or stronger).
Only then all stores before Release in Thread 1 become visible after Acquire in Thread 2.

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

Acquire_release memory order

Loads and stores after Acquire_release can not be
reordered before Acquire_release.
Loads and stores before Acquire_release can not be
reordered after Acquire_release.

b= fas(&a, 1, ACQ_REL);
b= add(&a, 1, ACQ_REL);
b= cas(&a, &o, 1, ACQ_REL, ACQ_REL);

Not valid with atomic load and store
b= load(&a, ACQ_REL); // undefined, may become ACQUIRE
store(&a, 1, ACQ_REL); // undefined, may become RELEASE

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

acquire_release memory order-example

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

Consume memory order

Consume is a weaker form of Acquire:

loads and stores, dependent on the value currently
loaded, that happen after Consume can not be reordered
before Consume.

b= load(&a, CONSUME);

b= fas(&a, 1, CONSUME);

b= add(&a, 1, CONSUME);

b= cas(&a, &o, 1, CONSUME, CONSUME);
fence(CONSUME); // must be preceded by RELAXED
atomic load or RMW

not valid with store

store(&a, 1, CONSUME); // undefined, may become
RELAXED

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

Release consume model

Consume must be always paired with Release (or stronger).
Only then all dependent stores before Release in Thread 1 become visible after Consume in Thread 2.
Note that currently no known production compilers track dependency chains: consume operations are lifted to acquire operations.
__ATOMIC_CONSUME (6.59 Built-in Functions for Memory Model Aware Atomic Operations)

This is currently implemented using the stronger __ATOMIC_ACQUIRE memory order because of a deficiency in C++11’s semantics
for memory_order_consume

https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
https://mariadb.org/wp-content/uploads/2017/11/2017-11-Memory-barriers.pdf

Sequentially consistent memory order

Loads and stores after Sequentially_consistent can
not be reordered before Sequentially_consistent.

Loads and stores before Sequentially_consistent can
not be reordered after Sequentially_consistent.

b= fas(&a, 1, SEQ_CST);

b= add(&a, 1, SEQ_CST);

b= cas(&a, &o, 1, SEQ_CST, SEQ_CST);
fence(SEQ_CST);

b= load(&a, SEQ_CST); // may become ACQUIRE + sync

store(&a, 1, SEQ_CST); // may become RELEASE + sync

High Level
Software Tools

and their
implementations mutex and condition variables from

system programming course

the remaining part is skipped in the
lecture!

Mutex Locks

● Previous solutions are complicated
○ and generally inaccessible (hardware instructions) to application programmers

● OS designers build software tools to solve critical section problem
● Simplest is mutex lock

○ Boolean variable indicating if lock is available or not

● Protect a critical section by
○ First acquire() a lock

○ Then release() the lock

● Calls to acquire() and release() must be atomic
○ Usually implemented via hardware atomic instructions such as compare-and-swap.

● But this solution requires busy waiting
○ This lock therefore called a spinlock

Solution to CS Problem Using Mutex Locks

while (true) {
acquire lock

 critical section

release lock

remainder section
}

Semaphore

● Synchronization tool that provides more sophisticated ways (than Mutex locks) for processes
to synchronize their activities.

● Semaphore S – integer variable
● Can only be accessed via two indivisible (atomic) operations

○ wait() and signal()
■ Originally called P() and V()

● Definition of the wait() operation
wait(S) {
 while (S <= 0)
 ; // busy wait
 S--;
}

● Definition of the signal() operation
signal(S) {
 S++;
}

Semaphore (Cont.)

● Counting semaphore – integer value can range over an unrestricted
domain

● Binary semaphore – integer value can range only between 0 and 1

○ Same as a mutex lock

● Can implement a counting semaphore S as a binary semaphore

● With semaphores we can solve various synchronization problems

Semaphore Usage Example

● Solution to the CS Problem

○ Create a semaphore “mutex” initialized to 1

wait(mutex);

 CS

signal(mutex);

● Consider P1 and P2 that with two statements S1 and S2 and the requirement that S1
to happen before S2

○ Create a semaphore “synch” initialized to 0

P1:

 S1;

 signal(synch);

P2:

 wait(synch);

 S2;

Semaphore Implementation

● Must guarantee that no two processes can execute the wait() and
signal() on the same semaphore at the same time

● Thus, the implementation becomes the critical section problem where
the wait and signal code are placed in the critical section

● Could now have busy waiting in critical section implementation
○ But implementation code is short

○ Little busy waiting if critical section rarely occupied

● Note that applications may spend lots of time in critical sections and
therefore this is not a good solution

Semaphore Implementation with no Busy waiting

● With each semaphore there is an associated waiting queue
● Each entry in a waiting queue has two data items:

○ Value (of type integer)

○ Pointer to next record in the list

● Two operations:
○ block – place the process invoking the operation on the appropriate waiting queue

○ wakeup – remove one of processes in the waiting queue and place it in the ready
queue

Implementation with no Busy waiting (Cont.)

● Waiting queue

 typedef struct {

 int value;

 struct process *list;

 } semaphore;

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

 S->value--;

 if (S->value < 0) {
 add this process to S->list;

 block();

 }

}

signal(semaphore *S) {

 S->value++;

 if (S->value <= 0) {
 remove a process P from S->list;

 wakeup(P);

 }

}

Problems with Semaphores

● Incorrect use of semaphore operations:

○ signal(mutex) …. wait(mutex)

○ wait(mutex) … wait(mutex)

○ Omitting of wait (mutex) and/or signal (mutex)

● These – and others – are examples of what can occur when semaphores and other
synchronization tools are used incorrectly.

Monitors

● A high-level abstraction that provides a convenient and effective mechanism
for process synchronization

● Abstract data type, internal variables only accessible by code within the
procedure

● Only one process may be active within the monitor at a time
● Pseudocode syntax of a monitor:

monitor monitor-name
{

// shared variable declarations
procedure P1 (…) { …. }

procedure P2 (…) { …. }

procedure Pn (…) {……}

 initialization code (…) { … }
}

Schematic view of a Monitor

Monitor Implementation Using Semaphores

● Variables

 semaphore mutex
 mutex = 1

● Each procedure P is replaced by

wait(mutex);
 …

 body of P;
 …
signal(mutex);

● Mutual exclusion within a monitor is ensured

Condition Variables

● condition x, y;

● Two operations are allowed on a condition variable:

○ x.wait() – a process that invokes the operation is suspended until

x.signal()

○ x.signal() – resumes one of processes (if any) that invoked

x.wait()

■ If no x.wait() on the variable, then it has no effect on the variable

 Monitor with Condition Variables

 Usage of Condition Variable Example

● Consider P1 and P2 that that need to execute two statements S1 and S2 and the
requirement that S1 to happen before S2

○ Create a monitor with two procedures F1 and F2 that are invoked by P1 and P2 respectively

○ One condition variable “x” initialized to 0

○ One Boolean variable “done”

○ F1:

 S1;

 done = true;

 x.signal();

○ F2:

 if done = false

 x.wait()

 S2;

Monitor Implementation Using Semaphores

● Variables

 semaphore mutex; // (initially = 1)
 semaphore next; // (initially = 0)
 int next_count = 0; // number of processes waiting

 inside the monitor

● Each function P will be replaced by

wait(mutex);
 …

 body of P;
 …
if (next_count > 0)

signal(next)
else

signal(mutex);

● Mutual exclusion within a monitor is ensured

 Implementation – Condition Variables

● For each condition variable x, we have:

semaphore x_sem; // (initially = 0)
int x_count = 0;

● The operation x.wait() can be implemented as:

x_count++;
if (next_count > 0)

 signal(next);
else

signal(mutex);
wait(x_sem);
x_count--;

Implementation (Cont.)

● The operation x.signal() can be implemented as:

if (x_count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}

Resuming Processes within a Monitor

● If several processes queued on condition variable x, and
x.signal() is executed, which process should be resumed?

● FCFS frequently not adequate

● Use the conditional-wait construct of the form

 x.wait(c)

 where:

○ c is an integer (called the priority number)

○ The process with lowest number (highest priority) is scheduled next

● Allocate a single resource among competing processes using priority
numbers that specifies the maximum time a process plans to use the
resource

 R.acquire(t);
 ...
 access the resurce;
 ...

 R.release;

● Where R is an instance of type ResourceAllocator

Single Resource allocation

● Allocate a single resource among competing processes using priority numbers that specifies the
maximum time a process plans to use the resource

● The process with the shortest time is allocated the resource first
● Let R is an instance of type ResourceAllocator (next slide)
● Access to ResourceAllocator is done via:

 R.acquire(t);
 ...
 access the resurce;
 ...
 R.release;

● Where t is the maximum time a process plans to use the resource

Single Resource allocation

A Monitor to Allocate Single Resource

monitor ResourceAllocator
{

boolean busy;
condition x;
void acquire(int time) {
if (busy)

x.wait(time);
busy = true;

}
void release() {
busy = false;
x.signal();

}
 initialization code() {

 busy = false;
}

}

Single Resource Monitor (Cont.)

● Usage:
 acquire

 ...

 release

● Incorrect use of monitor operations
○ release() … acquire()

○ acquire() … acquire())

○ Omitting of acquire() and/or release()

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 6

