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CPU Scheduler
CPU scheduling may take place,

 when a process:

1. switches from running to waiting 
state

2. switches from running to ready 
state

3. switches from waiting to ready
4. terminates

nonpreemptive schedulers use 1 & 4 only

preemptive schedulers run at all four points

▪ The CPU scheduler selects from among the 
processes in ready queue, and allocates a CPU 
core to one of them

○ How to order Queue?



Preemptive and Nonpreemptive Scheduling

▪ nonpreemptive: once the CPU has been allocated to a process, the 
process keeps the CPU until it releases it either by terminating or by 
switching to the waiting state.

▪ Otherwise, it is preemptive. 

▪ Virtually all modern operating systems including Windows, MacOS, 
Linux, and UNIX use preemptive scheduling algorithms.



Which scheduling may cause Race Conditions?
A. Preemptive
B. Non-preemptive

Preemptive scheduling 
● Example: two processes P1 and P2 that share data. 

○ P1 is updating data,
■ before it is finished, it is preempted.

○ P2 starts running and tries to read data
■ the data is in an inconsistent state

● more detail next week.

Exercise



Scheduling criteria

Why do we care?
- What goals should we have for a scheduling algorithm?



Basic Concepts

▪ Maximum CPU utilization obtained with 
multiprogramming

CPU–I/O Burst Cycle

▪ Process execution consists of a cycle of 
CPU execution and I/O wait

▪ CPU burst followed by I/O burst
▪ CPU burst distribution is of main concern



Histogram of CPU-burst Times

Large number of short bursts

Small number of longer bursts



Dispatcher

Dispatcher module gives control of the CPU to 
the process selected by the CPU scheduler; this 
involves:

▪ Switching context

▪ Switching to user mode

▪ Jumping to the proper location in the user 
program to restart that program

in linux to see #context switches:

▪ vmstat 1 3 

▪ for process 2166

• cat /proc/2166/status

Dispatch latency – 
time it takes for the 
dispatcher to stop 
one process and 
start another running



Scheduling Criteria
What goals should we have for a scheduling algorithm? How to compare one 
algorithm with another?

▪ CPU utilization – keep the CPU as busy as possible

▪ Throughput – # of processes that complete their execution per time 
unit

▪ Turnaround time – amount of time to execute a particular process

▪ Waiting time – amount of time a process has been waiting in the 
ready queue

▪ Response time – amount of time it takes from when a request was 
submitted until the first response is produced. 



Scheduling Algorithm Optimization Criteria

▪ CPU utilization

• Maximize 

▪ throughput

• Maximize 

What goals should we have for a scheduling algorithm?

▪ turnaround time 

• Minimize

▪ waiting time 

• Minimize

▪ response time

• Minimize



Scheduling Algorithms



First- Come, First-Served (FCFS) Scheduling

▪ Suppose that the processes arrive in the 
order: P1 , P2 , P3  

▪ The Gantt Chart 
for the schedule is

▪ Waiting times

○ WTP1  = 0 

○ WTP2  = 24

○ WTP3 = 27

▪ Average waiting time:  AWT = (0 + 24 + 27)/3 = 17



FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

 P2 , P3 , P1 

▪ Waiting times

• P1 = 6

•  P2 = 0 

• P3 = 3

▪ Average waiting time:  

• AWT =  (6 + 0 + 3)/3 = 3

▪ Waiting times? Awt? 

▪ Much better than previous case

▪ Convoy effect - short process 
behind long process

• Consider one CPU-bound and 
many I/O-bound processes



Arrival time    Process   required time (t)      
    
0       A 7   
4             B 4    
5        C 1           
9        D 1    
12        E 3  



FCFS summary

▪ wonderful for long processes when they finally get on
▪ terrible for short processes if they are behind a long process 



Shortest-Job-First (SJF) Scheduling

▪ Associate with each process the length of its next CPU burst

•  Use these lengths to schedule the process with the shortest time

▪ SJF is optimal – gives minimum average waiting time for a given set of 
processes

• The difficulty is knowing the length of the next CPU request

• Could ask the user



Shortest-Job-First (SJF) Scheduling

▪ Preemptive version called shortest-remaining-time-first
• when a process arrives at the ready queue with an expected CPU-burst-time that is 

less than the expected remaining time of the running process, the new one 
preempts the running process 



Example of SJF

▪ How do we determine the length of the next CPU burst?

• Could ask the user

• Estimate

Waiting times?
P1 = 3
P2 = 16
P3 = 9
P4 =0 
Average waiting time = 7 



Example of Shortest-remaining-time-first (preemptive SJF)

▪ Average waiting time =  6.5

▪ non-preemptive SJF awt = 7.75



Determining Length of Next CPU Burst

● tn
○ the most recent CPU-burst, 

● τn
○ the past predicted value (history)

● α 
○ is a parameter 0 ≤ α ≤ 1

The next CPU-burst is generally predicted as an exponential average of the previous CPU-bursts



Prediction of the Length of the Next CPU Burst



the expected burst length is calculated as follows: 

▪ a(t) = actual amount of time required during cpu burst t 
▪ e(t) = amount of time that was expected for cpu burst t
▪ e(t+1) = expected time during the next cpu burst

α is generally  0.1 
▪ if α = 0.5, 

   e(t+1) =  0.5 * e(t) + 0.5 * a(t)

http://www2.cs.uregina.ca/~hamilton/courses/330/notes/scheduling/scheduling.html 

http://www2.cs.uregina.ca/~hamilton/courses/330/notes/scheduling/scheduling.html


 Suppose a process p is given a default expected burst length of 5 time 
units.

▪  When it is run, the actually burst lengths are 
• 10,

• 10,

• 10,

• 1,

• 1,

• 1 

• (this information is not known in advance to any algorithm). 

▪ The prediction of burst times for this process? 



Let e(1) = 5, as a default value.

When process p runs, 

▪ its 1st burst actually runs 10 time units, so, 
a(1) = 10. 

▪  the prediction for the 2nd cpu burst

e(2)  = 0.5*e(1) + 0.5*a(1) = 0.5*5 + 0.5*10 = 7.5

e(3) = 0.5*e(2) + 0.5*a(2) = 0.5*7.5 + 0.5*10 = 8.75

e(4) = 0.5*e(3) + 0.5*a(3) = 0.5*8.75 + 0.5*10 = 9.38

a(2) = 10, 

a(3) = 10,

 a(4) = 1, 

a(5) = 1, 

a(6) = 1

● So, we predict that the next burst will be close to 10  (9.38) because we recent bursts have been of 
length 10.



At this point, it happens that the process starts having shorter bursts, with 
a(4) = 1

   e(5) = 0.5*e(4) + 0.5*a(4) = 0.5*9.38 + 0.5*1 = 5.19

   e(6) = 0.5*e(5) + 0.5*a(5) = 0.5*5.19 + 0.5*1 = 3.10

   e(7) = 0.5*e(6) + 0.5*a(6) = 0.5*3.10 + 0.5*1 = 2.05

● Once again, the algorithm has gradually adjusted to the process's recent burst lengths.  

● If the bursts lengths continued to be 1, the estimates would continue to adjust until, by rounding, they 
reached 1.00.



suppose that based on previous information about the processes, our 
estimates are exactly correct, 

▪ i.e., we expect process A to take 7 units, B to take 4 units, etc.  



● very short processes get very good service
● a process may mislead the scheduler if it previously had a short 

bursts, but now may be cpu intensive (this algorithm fails very badly 
for such a case) 

● the penalty ratios are small; this algorithm works extremely well in 
most cases    

● SJF cannot handle infinite loops
● poor performance for processes with short burst times arriving after a 

process with a long burst time has started
● processes with long burst times may starve

○ starvation - when a process is indefinitely postponed from getting on the processor    

Summary of SJF



Shortest remaining time (SRT) algorithm

● the new one preempts the running process
• when a process arrives at the ready queue with an expected CPU-burst-time that is 

less than the expected remaining time of the running process, 

● long processes can starve     





▪ very short processes get very good service

▪ a process may mislead the scheduler if it previously ran quickly but 
now may be cpu intensive (this algorithm fails very badly for such a 
case) 

▪ the penalty ratios are small;

▪ this algorithm works extremely well in most cases

▪ this algorithm provably gives the highest throughput (number of 
processes completed) of all scheduling algorithms if the estimates are 
exactly correct.     

Summary of SRT



Round Robin (RR)

● Each process gets a small unit of CPU time (time quantum q), usually 
10-100 milliseconds.  
○ After this time has elapsed, the process is preempted and added to the end of the 

ready queue.

○ if a process finishes early, before its quantum expires, the next process starts 
immediately and gets a full quantum

■ in some implementations, the next process may get only the rest of the 
quantum

● assume a new process arrives and goes into the queue before the 
process is removed from the processor 



Example of RR with Time Quantum = 4

▪ AWT = 5.66,

▪ Typically, higher average turnaround than SJF, but better response

▪ q should be large compared to context switch time

• q usually 10 milliseconds  to 100 milliseconds, 

• Context switch < 10 microseconds



● If there are n processes in the ready queue and the time quantum is 
q, 
○ then each process gets 1/n of the CPU time in chunks of at most q time units at 

once.

● process waiting time <  (n-1)q
● Timer interrupts every quantum to schedule next process

● Performance

○ q large ⇒ FIFO

○ q small ⇒ q must be large with respect to context switch, otherwise overhead is too 
high



Time Quantum and Context Switch Time



Turnaround Time Varies With The Time Quantum

● q should be > the context switch time, 
● But, it should not be too large.

○ if the time quantum is too large, 
■ RR scheduling degenerates to 

an FCFS policy. 
● A rule of thumb is that 80 percent of the CPU 

bursts should be shorter than the time 
quantum.





Comparison to FCFS

▪   RR has a much lower penalty ratio than FCFS for processes with 
short cpu bursts

▪   RR gives the processes with short bursts (interactive work) much 
better service

▪   RR gives processes with long bursts somewhat worse service, but 
greatly benefits processes with short bursts and the long processes 
do not need to wait that much longer

▪   RR is preemptive, that is sometimes the processor is taken away 
from a process that can still use it

▪   FCFS is not preemptive. 



Priority Scheduling
▪ A priority number (integer) is associated with 

each process

▪ The CPU is allocated to the process with the 
highest priority (smallest integer ≡ highest 
priority)

• Preemptive

• Nonpreemptive

▪ SJF is priority scheduling where priority is the 
inverse of predicted next CPU burst time

▪ Problem ≡ Starvation – low priority 
processes may never execute

▪ Solution ≡ Aging – as time progresses 
increase the priority of the process



Example of Priority Scheduling



Priority Scheduling w/ Round-Robin



Multilevel Queue

▪ In practice, it is often easier 
to have separate queues 
for each distinct priority, 

▪ and priority scheduling 
simply schedules the 
process in the 
highest-priority queue.



Multilevel Queue Scheduling

▪ A multilevel queue scheduling algorithm can also be used to partition 
processes into several separate queues based on the process type



Different type of process has different scheduling algorithm, as per requirement.

Lowest priority process gets starvation for the higher priority process because here priority is static. 

https://mycareerwise.com/content/multi-level-queue-scheduling/content/exam/gate/computer-science 

https://mycareerwise.com/content/multi-level-queue-scheduling/content/exam/gate/computer-science


Multilevel Feedback Queue

▪ To solve the starvation problem in Multilevel Queue 
• multilevel feedback queue scheduling, allows a process to move between queues

● Multilevel-feedback-queue scheduler defined by the following parameters:
○ Number of queues
○ Scheduling algorithms for each queue
○ Method used to determine when to upgrade a process to higher level queue

■ usually this is some type of aging, whereby a process that has waited a long time in a 
queue (say 15 minutes) gets upgraded by one level)

○ Method used to determine when to demote a process to a lower level queue
■  in the simple case, move down one level at the end of each quantum

○ Method used to determine which queue a process will enter when that process needs 
service

■ in the simple case, all ready processes enter at the end of queue 0
● Aging can be implemented using multilevel feedback queue



Example of Multilevel Feedback Queue

● Three queues: 
○ Q0 – RR with time quantum 8 

milliseconds

○ Q1 – RR time quantum 16 
milliseconds

○ Q2 – FCFS

● Scheduling
○ A new process enters queue Q0 

which is served in RR
■ When it gains CPU, the 

process receives 8 
milliseconds

■ If it does not finish in 8 
milliseconds, the process  is 
moved to queue Q1

○ At Q1 job is again served in RR and 
receives 16 additional milliseconds

■ If it still does not complete, it 
is preempted and moved to 
queue Q2



Thread 
Scheduling

▪ Distinction between user-level and 
kernel-level threads

▪ When threads supported, threads 
scheduled, not processes

▪ Many-to-one and many-to-many 
models, thread library schedules 
user-level threads to run on LWP

• Known as process-contention scope 
(PCS) since scheduling competition is 
within the process

• Typically done via priority set by 
programmer

▪ Kernel thread scheduled onto 
available CPU is system-contention 
scope (SCS) – competition among 
all threads in system



Pthread Scheduling

● API allows specifying either PCS or SCS during thread creation

○ PTHREAD_SCOPE_PROCESS  

■ schedules threads using PCS scheduling

○ PTHREAD_SCOPE_SYSTEM 

■ schedules threads using SCS scheduling

● Can be limited by OS

○  – Linux and macOS only support PTHREAD_SCOPE_SYSTEM

○ does not support PTHREAD_SCOPE_PROCESS



Pthread Scheduling API

#include <pthread.h> 
#include <stdio.h> 
#define NUM_THREADS 5 
int main(int argc, char *argv[]) { 
   int i, scope;
   pthread_t tid[NUM THREADS]; 
   pthread_attr_t attr; 
   /* get the default attributes */ 
   pthread_attr_init(&attr); 
   /* first inquire on the current scope */
   if (pthread_attr_getscope(&attr, &scope) != 0) 
      fprintf(stderr, "Unable to get scheduling scope\n"); 
   else { 
      if (scope == PTHREAD_SCOPE_PROCESS) 
         printf("PTHREAD_SCOPE_PROCESS"); 
      else if (scope == PTHREAD_SCOPE_SYSTEM) 
         printf("PTHREAD_SCOPE_SYSTEM"); 
      else
         fprintf(stderr, "Illegal scope value.\n"); 
   } 



Pthread Scheduling API

   /* set the scheduling algorithm to PCS or SCS */ 
   pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM); 
   /* create the threads */
   for (i = 0; i < NUM_THREADS; i++) 
      pthread_create(&tid[i],&attr,runner,NULL); 
   /* now join on each thread */
   for (i = 0; i < NUM_THREADS; i++) 
      pthread_join(tid[i], NULL); 
} 
/* Each thread will begin control in this function */ 
void *runner(void *param)
{ 
   /* do some work ... */ 
   pthread_exit(0); 
} 



Multiple-Proces
sor Scheduling

▪ CPU scheduling more complex 
when multiple CPUs are 
available

▪ Multiprocess may be any one of 
the following architectures:

• Multicore CPUs

• Multithreaded cores

• NUMA systems

• Heterogeneous multiprocessing



Multiple-Processor Scheduling

▪ Symmetric multiprocessing (SMP) is where each processor is self 
scheduling.

▪ All threads may be in a common ready queue (a)

▪ Each processor may have its own private queue of threads (b)



Multicore Processors

▪ Multiple threads per core also growing

• Takes advantage of memory stall(cpu works faster than memory) to make progress on 
another thread while memory retrieve happens

 



Multithreaded Multicore System

▪ Each core has > 1 hardware threads. 

▪ If one thread has a memory stall, switch to another thread!



▪ Chip-multithreading (CMT) 
assigns each core multiple 
hardware threads. (Intel refers 
to this as hyperthreading.)

▪ On a quad-core system with 2 
hardware threads per core, 
the operating system sees 8 
logical processors.

Multithreaded Multicore System



Multithreaded Multicore System

▪ Two levels of scheduling:

1. The operating system 
deciding which software 
thread to run on a logical 
CPU

2. How each core decides 
which hardware thread to run 
on the physical core.



Multiple-Processor Scheduling – Load Balancing

▪ If SMP, need to keep all CPUs loaded for efficiency

▪ Load balancing attempts to keep workload evenly distributed

▪ Push migration – periodic task checks load on each processor, and if 
found pushes task from overloaded CPU to other CPUs

▪ Pull migration – idle processors pulls waiting task from busy 
processor



Multiple-Processor Scheduling – Processor Affinity

● When a thread has been running on one 
processor, the cache contents of that 
processor stores the memory accesses by 
that thread.

● We refer to this as a thread having affinity 
for a processor (i.e., “processor affinity”)

● Load balancing may affect processor affinity 
as a thread may be moved from one 
processor to another to balance loads, yet 
that thread loses the contents of what it had 
in the cache of the processor it was moved 
off of.

● Soft affinity – the operating 
system attempts to keep a thread 
running on the same processor, 
but no guarantees.

● Hard affinity – allows a process 
to specify a set of processors it 
may run on.

○ sched_setaffinity(2) - Linux 
manual page

○  pthread_setaffinity_np(3) - 
Linux manual page 

https://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
https://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
https://man7.org/linux/man-pages/man3/pthread_setaffinity_np.3.html
https://man7.org/linux/man-pages/man3/pthread_setaffinity_np.3.html


NUMA and CPU Scheduling
If the operating system is NUMA-aware, it will assign memory closes 
to the CPU the thread is running on. 



Real-Time CPU 
Scheduling

▪ Can present obvious challenges

▪ Soft real-time systems – 
Critical real-time tasks have the 
highest priority, but no 
guarantee as to when tasks will 
be scheduled

▪ Hard real-time systems – task 
must be serviced by its 
deadline

 



Real-Time CPU Scheduling

▪ Event latency – the amount of 
time that elapses from when an 
event occurs to when it is 
serviced.

▪ Two types of latencies affect 
performance
1.  Interrupt latency – time from 

arrival of interrupt to start of 
routine that services interrupt

2.  Dispatch latency – time for 
schedule to take current process 
off CPU and switch to another

 



Interrupt Latency



Dispatch Latency

▪ Conflict phase of 
dispatch latency:
1. Preemption of any 

process running in 
kernel mode

2. Release by 
low-priority process 
of resources needed 
by high-priority 
processes

 



Priority-based Scheduling
▪ For real-time scheduling, scheduler must support preemptive, priority-based scheduling

• But only guarantees soft real-time!

▪ For hard real-time must also provide ability to meet deadlines
▪ Processes have new characteristics: periodic ones require CPU at constant intervals

• Has processing time t, deadline d, period p

• 0 ≤ t ≤ d ≤ p

• Rate of periodic task is 1/p 



For example,Windows has 32 different priority levels. The highest 
levels—priority
values 16 to 31—are reserved for real-time processes. 
Solaris and Linux have similar prioritization schemes.



Rate Monotonic Scheduling

▪ A priority is assigned based on the inverse of its period

▪ Shorter periods = higher priority;

▪ Longer periods = lower priority



Example-1:
P1: p1 = 50, t1 = 20
P2: p2 = 100, t2 = 35



Example-2:
P1: p1 = 50, t1 = 25
P2: p2 = 80, t2 = 35



Earliest Deadline First Scheduling (EDF)

▪ Priorities are assigned according to deadlines:

• The earlier the deadline, the higher the priority

• The later the deadline, the lower the priority



Proportional Share Scheduling

▪ T shares are allocated among all processes in the system

▪ An application receives N shares where N < T

▪ This ensures each application will receive N / T of the total processor 
time



POSIX 
Real-Time 
Scheduling

▪ The POSIX.1b standard
▪ API provides functions for managing 

real-time threads
▪ Defines two scheduling classes for 

real-time threads:
1. SCHED_FIFO - threads are scheduled using a 

FCFS strategy with a FIFO queue. There is no 
time-slicing for threads of equal priority

2. SCHED_RR - similar to SCHED_FIFO except 
time-slicing occurs for threads of equal priority

▪ Defines two functions for getting and 
setting scheduling policy:
1.  

pthread_attr_getsched_policy(pthrea
d_attr_t *attr, int *policy) 

2.  
pthread_attr_setsched_policy(pthrea
d_attr_t *attr, int policy) 

https://www.cs.unc.edu/~anderson/teach/comp790/papers/posix-rt.pdf 

https://www.cs.unc.edu/~anderson/teach/comp790/papers/posix-rt.pdf


POSIX Real-Time Scheduling API

#include <pthread.h> 
#include <stdio.h> 
#define NUM_THREADS 5 
int main(int argc, char *argv[]) 
{ 
   int i, policy;
   pthread_t_tid[NUM_THREADS]; 
   pthread_attr_t attr; 
   /* get the default attributes */ 
   pthread_attr_init(&attr); 
   /* get the current scheduling policy */
   if (pthread_attr_getschedpolicy(&attr, &policy) != 0) 
      fprintf(stderr, "Unable to get policy.\n"); 
   else { 
      if (policy == SCHED_OTHER) printf("SCHED_OTHER\n"); 
      else if (policy == SCHED_RR) printf("SCHED_RR\n"); 
      else if (policy == SCHED_FIFO) printf("SCHED_FIFO\n"); 
   } 



   /* set the scheduling policy - FIFO, RR, or OTHER */ 
   if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) != 0) 
      fprintf(stderr, "Unable to set policy.\n"); 
   /* create the threads */
   for (i = 0; i < NUM_THREADS; i++) 
      pthread_create(&tid[i],&attr,runner,NULL); 
   /* now join on each thread */
   for (i = 0; i < NUM_THREADS; i++) 
      pthread_join(tid[i], NULL); 
}
 
/* Each thread will begin control in this function */ 
void *runner(void *param)
{ 
   /* do some work ... */ 
   pthread_exit(0); 
} 

POSIX Real-Time Scheduling API (Cont.)



Operating 
System 

Examples

▪ Linux scheduling

▪ Windows scheduling

▪ Solaris scheduling



Linux Scheduling Through Version 2.5

● Prior to kernel version 2.5, ran variation of standard UNIX scheduling algorithm
● Version 2.5 moved to constant order O(1) scheduling time

○ Preemptive, priority based

○ Two priority ranges: time-sharing and real-time

○ Real-time range from 0 to 99 and nice value from 100 to 140

○ Map into  global priority with numerically lower values indicating higher priority

○ Higher priority gets larger q

○ Task run-able as long as time left in time slice (active)

○ If no time left (expired), not run-able until all other tasks use their slices

○ All run-able tasks tracked in per-CPU runqueue data structure

■ Two priority arrays (active, expired)
■ Tasks indexed by priority
■ When no more active, arrays are exchanged

○ Worked well, but poor response times for interactive processes



Linux Scheduling in Version 2.6.23 +

● Scheduling classes (include/asm-generic/vmlinux.lds.h )
○ Each has specific priority
○ Scheduler picks highest priority task in highest scheduling class(pick_next_task() in 

kernel/sched/core.c )
■ #define SCHED_DATA \
■ STRUCT_ALIGN(); \
■ __sched_class_highest = .; \
■ *(__stop_sched_class) \
■ *(__dl_sched_class) \
■ *(__rt_sched_class) \
■ *(__fair_sched_class) \
■ *(__idle_sched_class) \
■ __sched_class_lowest = .;

○ Rather than quantum based on fixed time allotments, based on proportion of CPU time

https://elixir.bootlin.com/linux/v6.11.4/source/include/asm-generic/vmlinux.lds.h#L129
https://elixir.bootlin.com/linux/v6.11.4/source/kernel/sched/core.c
https://elixir.bootlin.com/linux/v6.11.4/source/kernel/sched/core.c
https://elixir.bootlin.com/linux/v6.11.4/C/ident/SCHED_DATA
https://elixir.bootlin.com/linux/v6.11.4/C/ident/STRUCT_ALIGN
https://elixir.bootlin.com/linux/v6.11.4/C/ident/__sched_class_highest
https://elixir.bootlin.com/linux/v6.11.4/C/ident/__sched_class_lowest


Linux Scheduling in Version 2.6.23 +
● Completely Fair Scheduler (CFS) CFS Scheduler — The Linux Kernel 

documentation  
● CFS basically models an “ideal, precise multi-tasking CPU” on real hardware.

○ it always tries to run the task with the smallest p->se.vruntime 
■ the task which executed least so far 

○ CFS always tries to split up CPU time between runnable tasks as close to “ideal multitasking 
hardware” as possible.

Kernel 6.6 new The “Earliest Eligible Virtual Deadline First” 
● EEVDF Scheduler — The Linux Kernel documentation 
● lag value to determine fair shares

○ assigns vruntime
○ -lag means it ran more

■ not eligible to be the next
○ +lag means it ran less

■ computes VD based on +lags and picks the earliest VD as the next

https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://docs.kernel.org/scheduler/sched-eevdf.html


Linux Scheduling in Version 2.6.23 + (Cont.)

▪ Quantum calculated based on nice value from -20 to +19
• Lower value is higher priority

• Calculates target latency – interval of time during which task should run at least once

• Target latency can increase if say number of active tasks increases

▪ CFS scheduler maintains per task virtual run time in variable 
vruntime (in nanoseconds, not in jiffies or HZ)

• Associated with decay factor based on priority of task – lower priority is higher decay 
rate

• Normal default priority yields virtual run time = actual run time

▪ To decide next task to run, scheduler picks task with lowest virtual run 
time



CFS Performance

https://developer.ibm.com/tutorials/l-completely-fair-
scheduler/ 

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/
https://developer.ibm.com/tutorials/l-completely-fair-scheduler/


https://developer.ibm.com/tutorials/l-completely-fair-
scheduler/ 

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/
https://developer.ibm.com/tutorials/l-completely-fair-scheduler/


https://developer.ibm.com/tutorials/l-completely-fair-
scheduler/ 

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/
https://developer.ibm.com/tutorials/l-completely-fair-scheduler/


Linux Scheduling (Cont.)

▪ Real-time scheduling according to POSIX.1b

• Real-time tasks have static priorities

▪ Real-time plus normal map into global priority scheme

▪ Nice value of -20 maps to global priority 100

▪ Nice value of +19 maps to priority 139



Linux Scheduling (Cont.)

▪ Linux supports load 
balancing, but is also 
NUMA-aware.

▪ Scheduling domain is 
a set of CPU cores that 
can be balanced against 
one another. 

▪ Domains are organized 
by what they share (i.e., 
cache memory.) Goal is 
to keep threads from 
migrating between 
domains.

Scheduler Domains — The Linux 
Kernel documentation 

https://www.kernel.org/doc/html/latest/scheduler/sched-domains.html#
https://www.kernel.org/doc/html/latest/scheduler/sched-domains.html#


Linux Scheduler Implementation Details

How scheduler works

● https://cs4118.github.io/www/2023-1/lect/16-linux-sched-class.pdf 
● https://www3.cs.stonybrook.edu/~youngkwon/cse306/Lecture16_Linux_Proce

ss_Scheduling.pdf
● https://www.cs.columbia.edu/~jae/4118-LAST/L17-linux-sched-class.pdf

system calls sched(7) - Linux manual page 

https://cs4118.github.io/www/2023-1/lect/16-linux-sched-class.pdf
https://www3.cs.stonybrook.edu/~youngkwon/cse306/Lecture16_Linux_Process_Scheduling.pdf
https://www3.cs.stonybrook.edu/~youngkwon/cse306/Lecture16_Linux_Process_Scheduling.pdf
https://www.cs.columbia.edu/~jae/4118-LAST/L17-linux-sched-class.pdf
https://man7.org/linux/man-pages/man7/sched.7.html


Windows Scheduling

▪ Windows uses priority-based preemptive scheduling

▪ Highest-priority thread runs next

▪ Dispatcher is scheduler

▪ Thread runs until (1) blocks, (2) uses time slice, (3) preempted by 
higher-priority thread

▪ Real-time threads can preempt non-real-time

▪ 32-level priority scheme

▪ Variable class is 1-15, real-time class is 16-31

▪ Priority 0 is memory-management thread

▪ Queue for each priority

▪ If no runnable thread, runs idle thread Scheduling - Win32 apps | 
Microsoft Learn 

https://learn.microsoft.com/en-us/windows/win32/procthread/scheduling
https://learn.microsoft.com/en-us/windows/win32/procthread/scheduling


Windows Priority Classes

▪ Win32 API identifies several priority classes to which a process can 
belong

• REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS, 
ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS, 
BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

• All are variable except REALTIME

▪ A thread within a given priority class has a relative priority

• TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL, 
LOWEST, IDLE

▪ Priority class and relative priority combine to give numeric priority

▪ Base priority is NORMAL within the class

▪ If quantum expires, priority lowered, but never below base



Windows Priority Classes (Cont.)

▪ If wait occurs, priority boosted depending on what was waited for

▪ Foreground window given 3x priority boost

▪ Windows 7 added user-mode scheduling (UMS) 

• Applications create and manage threads independent of kernel

• For large number of threads, much more efficient

• UMS schedulers come from programming language libraries like                                         
C++ Concurrent Runtime (ConcRT) framework



Windows Priorities

see Scheduling Priorities - Win32 apps | 
Microsoft Learn 

https://learn.microsoft.com/en-us/windows/win32/procthread/scheduling-priorities
https://learn.microsoft.com/en-us/windows/win32/procthread/scheduling-priorities


Solaris

● Priority-based scheduling
● Six classes available

○ Time sharing (default) (TS)

○ Interactive (IA)

○ Real time (RT)

○ System (SYS)

○ Fair Share (FSS)

○ Fixed priority (FP)

● Given thread can be in one class at a time
● Each class has its own scheduling algorithm
● Time sharing is multi-level feedback queue

○ Loadable table configurable by sysadmin
Overview of the Scheduler - 
Oracle® Solaris 11.3 Programming 
Interfaces Guide 

https://docs.oracle.com/cd/E86824_01/html/E54777/fss-7.html#REFMAN7fss-7
https://docs.oracle.com/cd/E86824_01/html/E54775/fx-dptbl-4.html#REFMAN4fx-dptbl-4
https://docs.oracle.com/cd/E53394_01/html/E54815/psched-82475.html
https://docs.oracle.com/cd/E53394_01/html/E54815/psched-82475.html
https://docs.oracle.com/cd/E53394_01/html/E54815/psched-82475.html


Solaris Dispatch Table 



Solaris Scheduling

Real-Time Scheduler - Oracle® 
Solaris 11.3 Programming 
Interfaces Guide 

https://docs.oracle.com/cd/E53394_01/html/E54815/chap7rt-19493.html#scrolltoc
https://docs.oracle.com/cd/E53394_01/html/E54815/chap7rt-19493.html#scrolltoc
https://docs.oracle.com/cd/E53394_01/html/E54815/chap7rt-19493.html#scrolltoc


Solaris Scheduling (Cont.)

▪ Scheduler converts class-specific priorities into a per-thread global 
priority

• Thread with highest priority runs next

• Runs until (1) blocks, (2) uses time slice, (3) preempted by higher-priority thread

• Multiple threads at same priority selected via RR



Evaluating 
algorithms

● How to select 
CPU-scheduling algorithm 
for an OS?

● Determine criteria, then 
evaluate algorithms

○ deterministic evaluation
○ queueing models
○ simulations
○ implementation



Deterministic Evaluation

▪ Deterministic modeling
• Type of analytic evaluation

• Takes a particular predetermined workload and defines the performance of each algorithm  for 
that workload



▪ For each algorithm, calculate minimum average waiting time
▪ Simple and fast, but requires exact numbers for input, applies only 

to those inputs
• FCS is 28ms:

• Non-preemptive SFJ is 13ms:

• RR is 23ms:



Queueing Models

▪ Describes the arrival of processes, and CPU and I/O bursts 
probabilistically

• Commonly exponential, and described by mean

• Computes average throughput, utilization, waiting time, etc.

▪ Computer system described as network of servers, each with queue 
of waiting processes

• Knowing arrival rates and service rates

• Computes utilization, average queue length, average wait time, etc.



● Little’s law – in steady state, processes leaving queue 
must equal processes arriving, thus:
      L = λ x W

■ L: average queue length, the average number of customers in 
the queue

■ W: average waiting time in queue
■ λ: average arrival rate into queue

● Valid for any scheduling algorithm and arrival distribution
● For example, if on average 10 processes arrive per 

second, and there are normally  2 processes in queue, 



Simulations

● Queueing models limited
● Simulations more accurate

○ Programmed model of computer system
○ Clock is a variable
○ Gather statistics  indicating algorithm performance
○ Data to drive simulation gathered via

■ Random number generator according to probabilities
■ Distributions defined mathematically or empirically
■ Trace tapes record sequences of real events in real systems



Evaluation of CPU Schedulers by Simulation



Implementation

▪ Even simulations have limited accuracy

▪ Just implement new scheduler and test in real systems

• High cost, high risk

• Environments vary

▪ Most flexible schedulers can be modified per-site or per-system

▪ Or APIs to modify priorities

▪ But again environments vary


