
What we’ve learned from “HW: adding our system calls to
kernel”

● System call definitions are part of the
kernel!

○ they are executed in kernel mode
○ they have access to kernel-space
○ It can taint the security/protection

mechanism of the kernel

● Parameters(data) are passed from
user-space to kernel-space or vice versa

● Pointer parameters (char *buf)
○ Checking issues related to pointers are

important
○ Never allow pointers to kernel-space
○ Check for invalid pointers
○ use copy_to_user and copy_from_user for

data transfers

HW: Adding a Simple Module to the Kernel

System calls are easily to implement but difficult
to install, test, and debug

● You compiled kernel from scratch.
●

Kernel modules

● can be installed on a running kernel
● they can be stopped/restarted/reinstalled on

running kernel.

They can also taint the security/protection of the
kernel

The code of kernel modules is also executed in
kernel-space in the unrestricted mode.

https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.htm

Chapter 2. Managing kernel modules | Red Hat Product Documentation l

https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/managing-kernel-modules_managing-monitoring-and-updating-the-kernel#managing-kernel-modules_managing-monitoring-and-updating-the-kernel
https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html

HW2: Adding a Module to a Linux Kernel
listing installed kernel modules

$ grubby --info=ALL | grep title

listing loaded kernel modules

$ lsmod

https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.htm
Chapter 2. Managing kernel modules | Red Hat Product Documentation l

$ lsmod

Module Size Used
by
fuse 126976 3
uinput 20480 1
xt_CHECKSUM 16384 1
ipt_MASQUERADE 16384 1
xt_conntrack 16384 1
ipt_REJECT 16384 1
nft_counter 16384 16
nf_nat_tftp 16384 0
nf_conntrack_tftp 16384 1
nf_nat_tftp
tun 49152 1
bridge 192512 0
stp 16384 1
bridge
llc 16384 2
bridge,stp
nf_tables_set 32768 5
nft_fib_inet 16384 1
…

https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/managing-kernel-modules_managing-monitoring-and-updating-the-kernel#managing-kernel-modules_managing-monitoring-and-updating-the-kernel
https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html

HW2: Adding a Module to a Linux Kernel
kernel module info

modprobe <MODULE_NAME>

loading a kernel module

● select a directory
○ The modules are located in the

/lib/modules/$(uname
-r)/kernel/<SUBSYSTEM>/ directory.

$ modprobe <MODULE_NAME>

● or

$ insmod <module_name>

Unloading a kernel module

$ modprobe -r <MODULE_NAME>

● or

$ rmmod <module_name>

https://linux-kernel-labs.github.io/refs/heads/master/la
bs/kernel_modules.htm
Chapter 2. Managing kernel modules | Red Hat
Product Documentation l

$ lsmod | grep <MODULE_NAME>

https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/managing-kernel-modules_managing-monitoring-and-updating-the-kernel#managing-kernel-modules_managing-monitoring-and-updating-the-kernel
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/managing-kernel-modules_managing-monitoring-and-updating-the-kernel#managing-kernel-modules_managing-monitoring-and-updating-the-kernel
https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html

● dummy
○ name of the module

● module_init(...)
○ linux/module.h de

tanimli
○ init_module()
○ executed when we

install the module

$ insmod dummy

● module_exit(...)
○ linux/module.
○ executed when we

remove module

$ rmmod dummy

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>

MODULE_DESCRIPTION("My kernel module");
MODULE_AUTHOR("Me");
MODULE_LICENSE("GPL");

static int dummy_init(void)
{
 pr_debug("Hi\n");
 return 0;
}

static void dummy_exit(void)
{
 pr_debug("Bye\n");
}

module_init(dummy_init);
module_exit(dummy_exit);

HW2: Adding a Module to a Linux Kernel

https://linux-kernel-labs.github.io/ref
s/heads/master/labs/kernel_module
s.htm

https://elixir.bootlin.com/linux/v6.11.3/source/include/linux/module.h
https://elixir.bootlin.com/linux/v6.11.3/source/include/linux/module.h
https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html

Chapter 4:
Threads &

Concurrency
these slides are edited and some of the contents are taken
from
https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf
and
http://www.it.uu.se/education/course/homepage/os/vt18/module
-4/implementing-threads/

Review of process

Concurrency and threads

● Overview

● Multicore Programming

● Multithreading Models

● Threading Issues

● Operating System Examples
● Thread Libraries
● Implicit Threading

Main two point:

 1) threads vs. process

 2) kernel-level vs. user-level threads

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf
http://www.it.uu.se/education/course/homepage/os/vt18/module-4/implementing-threads/
http://www.it.uu.se/education/course/homepage/os/vt18/module-4/implementing-threads/

Review: Processes

● A process is an instance of a program running

● Why processes?
○ Simplicity of programming
○ Speed: Higher throughput, lower latency

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

Speed
Multiple processes can increase CPU utilization

Multiple processes can reduce latency

Running A then B requires 100 sec for B to complete

A is slower than if it had whole machine to itself,
but still <= 100 sec unless both A and B completely CPU-bound

https://www.scs.stanford.edu/24wi-cs21
2/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf
https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

Multitasking in real world

1 worker 10 months to make 1 widget

hire 100 workers to make 100 widgets

● Latency for first widget >> 1/10 month
● Throughput may be < 10 widgets per month

○ if can’t perfectly parallelize task
● Or 100 workers making 10,000 widgets may achieve > 10 widgets/month

■ if workers never idly wait

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

A process’s view of the world

Each process has own view of machine

● Its own address space – *(char *)0xc000 different in P1 & P2
● Its own open files
● Its own virtual CPU (through preemptive
● multitasking)

Simplifies programming model

● gcc does not care that firefox is running

Sometimes want interaction between processes

● Simplest is through files: emacs edits file, gcc compiles it
● More complicated: Shell/command, Window manager/app.

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

Kernel’s view of processes: implementing a process

● Keep a data structure for each process
○ Process Control Block (PCB)
○ Called proc in Unix, task_struct in Linux,

● Tracks state of the process
○ Running, ready (runnable), waiting, etc.

● Includes information necessary to run
○ Registers, virtual memory mappings, etc.
○ Open files (including memory mapped files)

● Various other data about the process
○ Credentials (user/group ID), signal mask, controlling terminal,

priority, accounting statistics, whether being debugged, which
system call binary emulation in use, . . .

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

Process states

Process can be in one of several states
● new & terminated at beginning & end of life
● running – currently executing (or will execute on kernel return)
● ready – can run, but kernel has chosen different process to run
● waiting – needs async event (e.g., disk operation) to proceed

Which process should kernel run?
● if 0 runnable, run idle loop (or halt CPU), if 1 runnable, run it
● if >1 runnable, must make scheduling decision

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

Preemption

Can preempt a process when kernel gets control

● Running process can vector control to kernel
○ System call, page fault, illegal instruction, etc.
○ May put current process to sleep

■ e.g., read from disk
○ May make other process runnable

■ e.g., fork, write to pipe
● Periodic timer interrupt

○ If running process used up quantum, schedule another
● Device interrupt

○ Disk request completed, or packet arrived on network
○ Previously waiting process becomes runnable
○ Schedule if higher priority than current running proc.

Changing running process is called a context switch

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

Context switch

Very machine dependent. Typical things include:

● Save program counter and integer registers
(always)

● Save floating point or other special registers

● Save condition codes

● Change virtual address translations

Non-negligible cost

● Save/restore floating point registers expensive

○ Optimization: only save if process used floating point

● May require flushing TLB (memory translation
hardware)

● Usually causes more cache misses (switch
working sets)

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

Inter-process communication

● How can processes interact in real time?
○ (a) By passing messages through the kernel
○ (b) By sharing a region of physical memory
○ (c) Through asynchronous signals or alerts

Creating/deleting processes in Unix

Other examples

E.g. windows system call CreateProcessA function (processthreadsapi.h) - Win32 apps | Microsoft Learn

 CreateProcessAsUserA function (processthreadsapi.h) - Win32 apps | Microsoft Learn

BOOL CreateProcessAsUserA(
 [in, optional] HANDLE hToken,
 [in, optional] LPCSTR lpApplicationName,
 [in, out, optional] LPSTR lpCommandLine,
 [in, optional] LPSECURITY_ATTRIBUTES lpProcessAttributes,
 [in, optional] LPSECURITY_ATTRIBUTES lpThreadAttributes,
 [in] BOOL bInheritHandles,
 [in] DWORD dwCreationFlags,
 [in, optional] LPVOID lpEnvironment,
 [in, optional] LPCSTR lpCurrentDirectory,
 [in] LPSTARTUPINFOA lpStartupInfo,
 [out] LPPROCESS_INFORMATION lpProcessInformation
);

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessasusera?redirectedfrom=MSDN

Running programs

Loop that reads a command and executes it

Recognizes
command < input > output 2> errlog

Example IPC: Pipes-message passing through kernel

Overview of
multicore

programming

● Overview

● Multicore Programming

● Multithreading Models

Multicore Programming

● Multicore or multiprocessor systems putting pressure on programmers,
challenges include:
○ Dividing activities

○ Balance

○ Data splitting

○ Data dependency

○ Testing and debugging

● Parallelism implies a system can perform more than one task simultaneously

● Concurrency supports more than one task making progress

○ Single processor / core, scheduler providing concurrency

Concurrency (think as logical) vs. Parallelism (actual)

▪ Concurrent execution on single-core system:

▪ Parallelism on a multi-core system:

Multicore Programming

● Types of parallelism

○ Data parallelism – distributes subsets of the same data across multiple cores,
same operation on each

○ Task parallelism – distributes threads across cores, each thread performing
unique operation

Data and Task Parallelism

Amdahl’s Law

● Identifies performance gains from adding additional cores to an application that has both serial
and parallel components

● S is fraction of task that is necessarily serial (the rest is parallel)

● N processing cores

● What is the speedup, if application is 75% parallel and 25% serial, moving from 1 to 2 cores?

● What happens

○ as S approaches 0?

○ as S approaches 1?

○ as N approaches infinity?

Amdahl’s Law

https://en.wikipedia.org/wiki/Amdahl%27s_law#/media/File:AmdahlsLaw.svg

Single and Multithreaded Processes

● A thread is a schedulable execution context
○ Program counter, stack, registers, . . .

● Simple programs use one thread per process
● But can also have multi-threaded programs

○ Multiple threads running in same process’s address space

Motivation for threads

● Most modern applications are multithreaded

● Threads run within application

● Multiple tasks with the application can be implemented by separate threads

○ Allows one process to use multiple CPUs or cores

○ Allows program to overlap I/O and computation

● Process creation is heavy-weight while thread creation is light-weight

○ All threads in one process share memory, file descriptors, etc.

● Can simplify code, increase efficiency

● Kernels are generally multithreaded

Multithreaded Server Architecture

for (;;) {
fd = accept_client ();
thread_create (service_client, &fd);

}

Benefits

● Responsiveness – may allow continued execution if part of process is
blocked, especially important for user interfaces

● Resource Sharing – threads share resources of process, easier than shared
memory or message passing

● Economy – cheaper than process creation, thread switching lower overhead
than context switching

● Scalability – process can take advantage of multicore architectures

User and Kernel
Threads
CPU-Scheduler?

● User level
● Kernel level

Thread reminders

The execution of multiple threads is interleaved!

● there may be race condition
● may need synchronization

Can have non-preemptive threads

● One thread executes exclusively until it makes a blocking call

Or preemptive threads (what we usually mean in this class)

● May switch to another thread between any two instructions.

How to implement Kernel Threads?

Can implement thread_create as a system call
● Start with process abstraction in kernel
● thread_create like process creation with features stripped out

○ Keep same address space, file table, etc., in new process
○ rfork/clone syscalls actually allow individual control

Faster than a process, but still very heavy weight

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

 Limitations of kernel-level threads

● Every thread operation must go through kernel
○ create, exit, join, synchronize, or switch for any reason

■ syscall takes 100 cycles, fn call 5 cycles
■ Result: threads 10x-30x slower when implemented in kernel

● One-size fits all thread implementation
○ Kernel threads must please all people
○ Maybe pay for fancy features (priority, etc.) you don’t need

● General heavyweight memory requirements
○ E.g., requires a fixed-size stack within kernel
○ Other data structures designed for heavier-weight processes

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

Alternative: User threads

Implement as user-level library (a.k.a. green
threads or fibers)

● One kernel thread per process
● thread_create, thread_exit, etc., just library

functions

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

Implementing user-level threads

● Allocate a new stack for each
thread_create

● Keep a queue of runnable threads
● Replace networking system calls

(read/write/etc.)
○ If operation would block, switch and run

different thread
● Schedule periodic timer signal (setitimer)

○ Switch to another thread on timer signals
(preemption)

Example: Multi-threaded web server

● Thread calls read to get data from remote
web browser

● “Fake” read function makes read syscall in
non-blocking mode

● No data? schedule another thread
● On timer or when idle check which

connections have new data

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

Thread implementation details

● Caller must save some state across function call
○ Return address, caller-saved registers

● Other state does not need to be saved
○ Callee-saved regs, global variables, stack pointer

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

Thread implementation details

Background: calling conventions

Registers: divided into 2 groups

● caller-saved regs: %eax [return val],
%edx, & %ecx on x86

● callee-saved regs on x86, %ebx, %esi,
%edi, plus %ebp and %esp

Local variables

● stored in registers and on stack

Function arguments

● go in caller-saved regs and on stack

Functions restore values of calle-saved regs
upon return

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

example from pintos

pushl %ebx; pushl %ebp # Save callee-saved regs
pushl %esi; pushl %edi
mov thread_stack_ofs, %edx # %edx = offset of stack field

in thread struct
movl 20(%esp), %eax # %eax = cur
movl %esp, (%eax,%edx,1) # cur->stack = %esp
movl 24(%esp), %ecx # %ecx = next
movl (%ecx,%edx,1), %esp # %esp = next->stack
popl %edi; popl %esi # Restore calle-saved regs
popl %ebp; popl %ebx
ret # Resume execution

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

Limitations of user-level threads

● A user-level thread library can do the same thing as Pintos
● Can’t take advantage of multiple CPUs or cores
● A blocking system call blocks all threads

○ Can use O_NONBLOCK to avoid blocking on network
connections

○ But doesn’t work for disk (e.g., even aio doesn’t work for
metadata)

○ So one uncached disk read/synchronous write blocks all
threads

● A page fault blocks all threads
● Possible deadlock if one thread blocks on another

○ May block entire process and make no progress
○ [More on deadlock in future lectures.]

Benefit:

fast: context switching between user
threads within the same process is
extremely efficient

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

Multithreading
Models: User

threads on kernel
threads

● Many-to-One

● One-to-One

● Many-to-Many

● two-level

All models maps user-level threads to
kernel-level threads.

A kernel thread is similar to a process in a
non-threaded (single-threaded) system.

The kernel thread is the unit of execution that is
scheduled by the kernel to execute on the CPU.

The term virtual processor is often used
instead of kernel thread.

Many-to-One

● Many user-level threads mapped to single kernel thread

● One thread blocking causes all to block

● Multiple threads may not run in parallel on multicore system because
only one may be in kernel at a time

● Few systems currently use this model

● Examples:

○ Solaris Green Threads (aka virtual threads)

○ GNU Portable Threads

One-to-One

● Each user-level thread maps to kernel thread

● Creating a user-level thread creates a kernel thread

● More concurrency than many-to-one

● Number of threads per process sometimes restricted due to overhead

● Examples

○ Windows

○ Linux

○ macOS

○ iOS

○ FreeBSD

○ Solaris

Many-to-Many Model
● Allows many user level threads to be mapped to many kernel threads

● Allows the operating system to create a sufficient number of kernel
threads

● Windows with the ThreadFiber package, fibers

○ scheduling happens at the user level

● Otherwise not very common

Two-level Model

● Similar to M:M, except that it allows a user thread to be bound to
kernel thread

Limitations of n:m threading

● Many of same problems as n : 1 threads
○ Blocked threads, deadlock, . . .

● Hard to keep same # kthreads as available CPUs
○ Kernel knows how many CPUs available

○ Kernel knows which kernel-level threads are blocked

○ But tries to hide these things from applications for transparency

○ So user-level thread scheduler might think a thread is running while underlying
kernel thread is blocked

● Kernel doesn’t know relative importance of threads
○ Might preempt kthread in which library holds important lock

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/processes.pdf

User Threads and Kernel Threads

● User threads - management done by user-level threads library

■ POSIX Pthreads

■ Windows threads

■ Java threads

● Kernel threads - Supported by the Kernel

■ Windows

■ Linux

■ Mac OS X

■ iOS

■ Android

Alternative kernel interfaces for threads

User-level library

● Management in application’s address
space

● High performance and very flexible
● Lack functionality

○ processor blocked during system services

Operating system kernel

● Poor performance (when compared to
user-level threads)

● Poor flexibility
● High functionality

Scheduler Activations

Goal: kernel interface combined with user-level
thread package

● Same functionality as kernel threads
● Performance and flexibility of user-level

threads

Scheduler activations

● Allow user level threads
to act like kernel level
threads/virtual processors

● Notify user level
scheduler of relevant
kernel events
○ Like what?

● Provide space in kernel to
save context of user
thread when kernel stops
it
○ E.g., for I/O or to run

another application

Scheduler activations: example

(2). The three user level threads take turn executing on the single
kernel-level thread.

(1) to a process with three user-level threads

https://www2.it.uu.se/education/course/homepage/os/vt18/module-4/
implementing-threads/#fn:scheduler-activations

https://www2.it.uu.se/education/course/homepage/os/vt18/module-4/implementing-threads/#fn:scheduler-activations
https://www2.it.uu.se/education/course/homepage/os/vt18/module-4/implementing-threads/#fn:scheduler-activations

3) The executing thread makes a
blocking system call

 4) the the kernel blocks the
calling user-level thread and the
kernel-level thread used to
execute the user-level thread

 5)Scheduler activation: the kernel decides to
allocate a new kernel-level thread to the process

6) Upcall: the kernel notifies the
user-level thread manager which
user-level thread that is now blocked
and that a new kernel-level thread is
available

7) The user-level thread manager
move the other threads to the new
kernel thread and resumes one of the
ready threads.

https://www2.it.uu.se/education/course/homepage/os/vt18/module-4/
implementing-threads/#fn:scheduler-activations

https://www2.it.uu.se/education/course/homepage/os/vt18/module-4/implementing-threads/#fn:scheduler-activations
https://www2.it.uu.se/education/course/homepage/os/vt18/module-4/implementing-threads/#fn:scheduler-activations

8) While one user-level thread is blocked
9) the other threads can take turn
executing on the new kernel thread.

https://www2.it.uu.se/education/course/homepage/os/vt18/module-4/
implementing-threads/#fn:scheduler-activations

Main Limitation of scheduler
activations

● Upcall performance (5x
slowdown)

https://www2.it.uu.se/education/course/homepage/os/vt18/module-4/implementing-threads/#fn:scheduler-activations
https://www2.it.uu.se/education/course/homepage/os/vt18/module-4/implementing-threads/#fn:scheduler-activations

Scheduling at the user-level

Cooperative (yield) Preemptive

Or both

User-level thread scheduling

Note: User mode cooperatively scheduled threads, fibers or
stackful-coroutines, are mostly abandoned for various reasons but used
in Go-Goroutines, C++ fibers etc.
● Distinguishing coroutines and fibers in C++
● P1520R0 Response to response to “Fibers under the magnifying

glass” (Gor Nishanov)
● Reference: P0866R0 Response to “Fibers under the magnifying

glass” (Nat Goodspeed, Oliver Kowalke) #120
● Reference: P1364R0 Fibers under the magnifying glass (Gor

Nishanov) #82
● Reference: P0876R5 fiber_context - fibers without scheduler (Oliver

Kowalke, Nat Goodspeed)

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4024.pdf
https://wg21.link/p1520r0
https://wg21.link/p0866r0
https://github.com/cplusplus/papers/issues/120
https://wg21.link/p1364r0
https://github.com/cplusplus/papers/issues/82
https://wg21.link/p0876

Operating System
Examples

● Windows Threads

● Linux Threads

Windows Threads

● Windows API – primary API for Windows applications

● Implements the one-to-one mapping, kernel-level

● Each thread contains

○ A thread id

○ Register set representing state of processor

○ Separate user and kernel stacks for when thread runs in user mode or kernel mode

○ Private data storage area used by run-time libraries and dynamic link libraries (DLLs)

● The register set, stacks, and private storage area are known as the
context of the thread

Windows Threads (Cont.)

● The primary data structures of a thread include:

○ ETHREAD (executive thread block) – includes pointer to process to which thread
belongs and to KTHREAD, in kernel space

○ KTHREAD (kernel thread block) – scheduling and synchronization info, kernel-mode
stack, pointer to TEB, in kernel space

○ TEB (thread environment block) – thread id, user-mode stack, thread-local storage, in
user space

Windows Threads Data Structures

Linux Threads

● Linux refers to them as tasks rather than threads

● Thread creation is done through clone(), clone3() system call

● clone() allows a child task to share the address space of the parent task
(process)

○ Flags control behavior

● struct task_struct points to process data structures (shared or unique)

clone(2) - Linux manual page

clone, __clone2, clone3 - create a child process

#define _GNU_SOURCE /* See feature_test_macros(7) */

#include <sched.h>

int clone(int (*fn)(void *), void *child_stack,

 int flags, void *arg, ...

 /* pid_t *ptid, struct user_desc *tls, pid_t *ctid */);

clone() creates a new process, in a manner similar to fork(2). It is actually a library function layered on top of the underlying clone() system call,
hereinafter referred to as sys_clone. A description of sys_clone is given toward the end of this page.

When the child process is created with clone(), it executes the function fn(arg). (This differs from fork(2), where execution continues in the child
from the point of the fork(2) call.) The fn argument is a pointer to a function that is called by the child process at the beginning of its execution.
The arg argument is passed to the fn function.

When the fn(arg) function application returns, the child process terminates. The integer returned by fn is the exit code for the child process. The
child process may also terminate explicitly by calling exit(2) or after receiving a fatal signal.

The child_stack argument specifies the location of the stack used by the child process. Since the child and calling process may share memory, it
is not possible for the child process to execute in the same stack as the calling process. The calling process must therefore set up memory space
for the child stack and pass a pointer to this space to clone(). Stacks grow downward on all processors that run Linux (except the HP PA
processors), so child_stack usually points to the topmost address of the memory space set up for the child stack.

https://man7.org/linux/man-pages/man2/clone.2.html
https://linux.die.net/man/7/feature_test_macros
https://linux.die.net/include/sched.h
https://linux.die.net/man/2/fork
https://linux.die.net/man/2/fork
https://linux.die.net/man/2/fork
https://linux.die.net/man/2/exit

User Level
Thread Libraries

● Thread library provides
programmer with API for
creating and managing threads

● Two primary ways of
implementing
○ Kernel-level library supported by

the OS
■ explicit threading

○ Library entirely in user space
■ implicit threading
■ concurrent parts of the

program indicated
■ compiler manages threading

Pthreads(you have seen in BIL222)

● May be provided either as user-level or kernel-level

● A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

● Specification, not implementation

● API specifies behavior of the thread library, implementation is up to
development of the library

● Common in UNIX operating systems (Linux & Mac OS X)

Pthreads Example

Pthreads Example (Cont.)

Pthreads Code for Joining 10 Threads

Windows Multithreaded C Program

Windows Multithreaded C Program (Cont.)

Java Threads

● Java threads are managed by the JVM

● Typically implemented using the threads model provided by underlying OS

● Java threads may be created by:

○ Extending Thread class

○ Implementing the Runnable interface

○ Standard practice is to implement Runnable interface

Java Threads

Implementing Runnable interface:

Creating a thread:

Waiting on a thread:

Java Executor Framework

● Rather than explicitly creating threads, Java also allows thread creation
around the Executor interface:

● The Executor is used as follows:

Java Executor Framework

Java Executor Framework (Cont.)

Implicit
Threading

● Growing in popularity as numbers
of threads increase, program
correctness more difficult with
explicit threads

● Creation and management of
threads done by compilers and
run-time libraries rather than
programmers

● Five methods explored
○ Thread Pools

○ Fork-Join

○ OpenMP

○ Grand Central Dispatch

○ Intel Threading Building Blocks

Thread Pools

● Create a number of threads in a pool where they await work

● Advantages:

○ Usually slightly faster to service a request with an existing thread than create a new
thread

○ Allows the number of threads in the application(s) to be bound to the size of the pool

○ Separating task to be performed from mechanics of creating task allows different
strategies for running task

■ i.e.,Tasks could be scheduled to run periodically

● Windows API supports thread pools:

see Using the Thread Pool Functions - Win32 apps | Microsoft Learn

https://learn.microsoft.com/en-us/windows/win32/procthread/using-the-thread-pool-functions

Java Thread Pools

● Three factory methods for creating thread pools in Executors class:

https://www.baeldung.com/thread-pool-java-and-guava

https://www.baeldung.com/thread-pool-java-and-guava

Java Thread Pools (Cont.)

Fork-Join Parallelism

● Multiple threads (tasks) are forked, and then joined.

Fork-Join Parallelism

● General algorithm for fork-join strategy:

Fork-Join Parallelism

Fork-Join Parallelism in Java

Fork-Join Parallelism in Java

Fork-Join Parallelism in Java

● The ForkJoinTask is an abstract base class

● RecursiveTask and RecursiveAction classes extend ForkJoinTask

● RecursiveTask returns a result (via the return value from the compute() method)

● RecursiveAction does not return a result

OpenMP

● Set of compiler directives and
an API for C, C++, FORTRAN

● Provides support for parallel
programming in shared-memory
environments

● Identifies parallel regions –
blocks of code that can run in
parallel

#pragma omp parallel

Create as many threads as there
are cores

https://www.openmp.org/resources/
tutorials-articles/

https://www.openmp.org/resources/tutorials-articles/
https://www.openmp.org/resources/tutorials-articles/

● Run the for loop in parallel

Grand Central Dispatch

● Apple technology for macOS and iOS operating systems

○ Extensions to C, C++ and Objective-C languages, API, and run-time library

○ Allows identification of parallel sections

○ Manages most of the details of threading

○ Block is in “^{ }” :

 ˆ{ printf("I am a block"); }

○ Blocks placed in dispatch queue

○ Assigned to available thread in thread pool when removed from queue
from wikipedia: It is an implementation of task parallelism based on the thread pool pattern.The fundamental idea is to
move the management of the thread pool out of the hands of the developer, and closer to the operating system.

https://en.wikipedia.org/wiki/Grand_Central_Dispatch
https://en.wikipedia.org/wiki/Task_parallelism
https://en.wikipedia.org/wiki/Thread_pool_pattern

Grand Central Dispatch

● Two types of dispatch queues:

○ serial – blocks removed in FIFO order, queue is per process, called main queue

■ Programmers can create additional serial queues within program

○ concurrent – removed in FIFO order but several may be removed at a time

■ Four system wide queues divided by quality of service:

o QOS_CLASS_USER_INTERACTIVE

o QOS_CLASS_USER_INITIATED

o QOS_CLASS_USER_UTILITY

o QOS_CLASS_USER_BACKGROUND

Grand Central Dispatch

● For the Swift language a task is defined as a closure – similar to a
block, minus the caret

● Closures are submitted to the queue using the dispatch_async()
function:

Intel Threading Building Blocks (oneTBB)
https://www.intel.com/content/www/us/en/develop/documentation/

get-started-with-onetbb/top.html
Intel® oneAPI Threading Building Blocks (oneTBB) is a runtime-based parallel programming model for
C++ code that uses threads.

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-onetbb/top.html
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-onetbb/top.html

Threading
Issues

● Semantics of fork() and exec()
system calls

● Signal handling

○ Synchronous and asynchronous

● Thread cancellation of target
thread

○ Asynchronous or deferred

● Thread-local storage

● Scheduler Activations

Semantics of fork() and exec()

● Does fork()duplicate only the calling thread or all threads?

○ Some UNIXes have two versions of fork

● exec() usually works as normal – replace the running process
including all threads

Signal Handling

● Signals are used in UNIX systems to notify a process that a particular
event has occurred.

● A signal handler is used to process signals
1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

1. default
2. user-defined

● Every signal has default handler that kernel runs when handling
signal
○ User-defined signal handler can override default

○ For single-threaded, signal delivered to process

Signal Handling (Cont.)

● Where should a signal be delivered for multi-threaded?

○ Deliver the signal to the thread to which the signal applies

○ Deliver the signal to every thread in the process

○ Deliver the signal to certain threads in the process

○ Assign a specific thread to receive all signals for the process

Thread Cancellation

● Terminating a thread before it has finished

● Thread to be canceled is target thread

● Two general approaches:

○ Asynchronous cancellation terminates the target thread immediately

○ Deferred cancellation allows the target thread to periodically check if it should be
cancelled

● Pthread code to create and cancel a thread:

Thread Cancellation (Cont.)

● Invoking thread cancellation requests cancellation, but actual cancellation
depends on thread state

● If thread has cancellation disabled, cancellation remains pending until thread
enables it

● Default type is deferred
○ Cancellation only occurs when thread reaches cancellation point

■ i.e., pthread_testcancel()
■ Then cleanup handler is invoked

● On Linux systems, thread cancellation is handled through signals

Thread Cancellation in Java

● Deferred cancellation uses the interrupt() method, which sets the
interrupted status of a thread.

● A thread can then check to see if it has been interrupted:

Thread-Local Storage

● Thread-local storage (TLS) allows each thread to have its own copy
of data

● Useful when you do not have control over the thread creation process
(i.e., when using a thread pool)

● Different from local variables

○ Local variables visible only during single function invocation

○ TLS visible across function invocations

● Similar to static data

○ TLS is unique to each thread

