
Review: A View of Operating System Services

Review: API – System Call – OS Relationship

Review: System Call Parameter Passing

● Three general methods used to pass parameters to the OS
○ pass the parameters in registers

■ Simplest (no context copy)
■ In some cases, may be more parameters than registers

○ address of a block passed as a parameter in a register
■ Parameters stored in the block, or table, in memory
■ This approach taken by Linux and Solaris

○ Parameters placed, or pushed, onto the stack by the program and popped off the stack by
the operating system

● Block and stack methods do not limit the number or length of parameters
being passed
○ however they use memory

Review: kernel implementation structure

monolithic kernel microkernel

Reliability If one driver crashes,
entire kernel fails

Kernel can restart system
program as needed

Ease of
Development

Must get entire kernel to
work

Able to test just one part
without affecting rest

Speed faster:
No extraneous context
switching,

Slow: due to message
passing (context switches)

memory Relatively modest in
memory usage

Memory footprint much
larger

hybrid kernel

● In practice, modern OSes are hybrid

● Linux is more monolithic, than current Windows and macOS

○ https://makelinux.github.io/kernel/diagram/ l

○ https://en.wikipedia.org/wiki/Architecture_of_macOS

○ https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/overview-of-windows-components

● Loadable kernel modules: bit of code that kernel can load (and usually unload) while system is
running, to extend functionality

● Examples:

○ Linux kernel modules (lkm),

○ Windows device drivers

○ macOS extension

https://makelinux.github.io/kernel/diagram/
https://en.wikipedia.org/wiki/Architecture_of_macOS
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/overview-of-windows-components

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

 Process Management
Chapter 3:Processes

Outline

● Process Concept

● Process Scheduling

● Operations on Processes

● Interprocess Communication

● IPC in Shared-Memory Systems

● IPC in Message-Passing Systems

● Examples of IPC Systems

● Communication in Client-Server Systems

Process Concept

● An operating system executes a variety of programs that run as a process.
● Process – a program in execution; process execution must progress in

sequential fashion. No parallel execution of instructions of a single process
● Multiple parts

○ The program code, also called text section

○ Current activity including program counter, processor registers

○ Stack containing temporary data

■ Function parameters, return addresses, local variables

○ Data section containing global variables

○ Heap containing memory dynamically allocated during run time

Process Concept (Cont.)

● Program is passive entity stored on disk (executable file); process is
active

○ Program becomes process when an executable file is loaded into memory

● Execution of program started via GUI mouse clicks, command line
entry of its name, etc.

● One program can be several processes

○ Consider multiple users executing the same program

User view of a
process

Process in Memory

Memory Layout of a C Program

$ gcc memory.c -o memory
$ size memory
 text data bss dec hex filename
 1603 600 8 2211 8a3 memory

#include <stdlib.h>

#include <stdio.h>

int global_j;

const int ci = 24;

void main (int argc, char **argv)

{

 int local_stack = 0;

 char *const_data = "This data is constant";

 char *tiny = malloc (32); /* allocate 32 bytes */

 char *small = malloc (2*1024); /* Allocate 2K */

 char *large = malloc (1*1024*1024); /* Allocate 1MB */

 printf ("Text is %p\n", main);

 printf ("Global Data is %p\n", &global_j);

 printf ("Local (Stack) is %p\n", &local_stack);

 printf ("Constant data is %p\n",&ci);

 printf ("Hardcoded string (also constant) are at %p\n",const_data);

 printf ("Tiny allocations from %p\n",tiny);

 printf ("Small allocations from %p\n",small);

 printf ("Large allocations from %p\n",large);

 printf ("Malloc (i.e. libSystem) is at %p\n",malloc);

 sleep(100); /* so we can use vmmap on this process before it exits */

}

$./a.out &
[2] 9584
Text is 0x55b81357e149
Global Data is 0x55b813581024
Local (Stack) is 0x7ffdfdb6e24c
Constant data is 0x55b81357f008
Hardcoded string (also constant) are at 0x55b81357f00c
Tiny allocations from 0x55b8147992a0
Small allocations from 0x55b8147992d0
Large allocations from 0x7fca29d15010
Malloc (i.e. libSystem) is at 0x7fca29eb1870

$ pmap -x 9584 #vmmap in macos
9584: ./a.out
Address Kbytes RSS Dirty Mode Mapping
000055b81357d000 4 4 0 r---- a.out
000055b81357e000 4 4 0 r-x-- a.out
000055b81357f000 4 4 0 r---- a.out
000055b813580000 4 4 4 r---- a.out
000055b813581000 4 4 4 rw--- a.out
000055b814799000 132 4 4 rw--- [anon]
00007fca29d15000 1040 12 12 rw--- [anon]
00007fca29e19000 152 148 0 r---- libc.so.6
00007fca29e3f000 1364 892 0 r-x-- libc.so.6
00007fca29f94000 332 128 0 r---- libc.so.6
00007fca29fe7000 16 16 16 r---- libc.so.6
00007fca29feb000 8 8 8 rw--- libc.so.6
00007fca29fed000 52 20 20 rw--- [anon]
00007fca2a00e000 8 4 4 rw--- [anon]
00007fca2a010000 4 4 0 r---- ld-linux-x86-64.so.2
00007fca2a011000 148 148 0 r-x-- ld-linux-x86-64.so.2
00007fca2a036000 40 36 0 r---- ld-linux-x86-64.so.2
00007fca2a040000 8 8 8 r---- ld-linux-x86-64.so.2
00007fca2a042000 8 8 8 rw--- ld-linux-x86-64.so.2
00007ffdfdb4f000 132 16 16 rw--- [stack]
00007ffdfdbf5000 16 0 0 r---- [anon]
00007ffdfdbf9000 8 4 0 r-x-- [anon]
---------------- ------- ------- -------
total kB 3488 1476 104

https://newosxbook.com/MOXiI.pdf

https://newosxbook.com/MOXiI.pdf

Kernel view of
process

Process Control Block
(PCB)

Process States

Process State

● As a process executes, it changes state

○ New: The process is being created

○ Running: Instructions are being executed

○ Waiting: The process is waiting for some event to occur

○ Ready: The process is waiting to be assigned to a processor

○ Terminated: The process has finished execution

Process Control Block (PCB)

● Process state
○ – running, waiting, etc.

● Program counter

○ – location of instruction to next execute

● CPU registers

○ – contents of all process-centric registers

● CPU scheduling information

○ - priorities, scheduling queue pointers

● Memory

○ -management information – memory allocated to the process

● Accounting information

○ – CPU used, clock time elapsed since start, time limits

● I/O status information

○ – I/O devices allocated to process, list of open files

Information associated with each process(also called task control block)

Threads

● The process model so far
performs a single thread of
execution.

● Consider having multiple
program counters per
process

○ Multiple locations can execute at
once

■ Multiple threads of control ->
threads

● Must then have storage for
thread details, multiple program
counters in PCB

Process Representation in Linux

Represented by the C structure
struct task_struct {

struct thread_info thread_info;

unsigned int __state;

unsigned int saved_state;

void *stack;

refcount_t usage;

unsigned int flags;

unsigned int ptrace;

struct alloc_tag *alloc_tag;

int on_cpu;

struct task_struct *last_wakee;

int recent_used_cpu;

int wake_cpu;

int on_rq;

int prio;

int static_prio;

int normal_prio;

unsigned int rt_priority;

struct sched_entity se;

struct sched_rt_entity rt;

struct list_head tasks;

struct mm_struct *mm;

/* Real parent process: */

struct task_struct __rcu*real_parent;

/* Recipient of SIGCHLD, wait4() reports: */

struct task_struct __rcu*parent;

/*

 * Children/sibling form the list of natural

children:

 */

struct list_head children;
struct list_head sibling;

https://elixir.bootlin.com/linux/v6.11.2/C/ident/task_struct
https://elixir.bootlin.com/linux/v6.11.2/C/ident/thread_info
https://elixir.bootlin.com/linux/v6.11.2/C/ident/thread_info
https://elixir.bootlin.com/linux/v6.11.2/C/ident/__state
https://elixir.bootlin.com/linux/v6.11.2/C/ident/saved_state
https://elixir.bootlin.com/linux/v6.11.2/C/ident/stack
https://elixir.bootlin.com/linux/v6.11.2/C/ident/refcount_t
https://elixir.bootlin.com/linux/v6.11.2/C/ident/usage
https://elixir.bootlin.com/linux/v6.11.2/C/ident/ptrace
https://elixir.bootlin.com/linux/v6.11.2/C/ident/alloc_tag
https://elixir.bootlin.com/linux/v6.11.2/C/ident/alloc_tag
https://elixir.bootlin.com/linux/v6.11.2/C/ident/on_cpu
https://elixir.bootlin.com/linux/v6.11.2/C/ident/task_struct
https://elixir.bootlin.com/linux/v6.11.2/C/ident/last_wakee
https://elixir.bootlin.com/linux/v6.11.2/C/ident/recent_used_cpu
https://elixir.bootlin.com/linux/v6.11.2/C/ident/wake_cpu
https://elixir.bootlin.com/linux/v6.11.2/C/ident/on_rq
https://elixir.bootlin.com/linux/v6.11.2/C/ident/prio
https://elixir.bootlin.com/linux/v6.11.2/C/ident/static_prio
https://elixir.bootlin.com/linux/v6.11.2/C/ident/normal_prio
https://elixir.bootlin.com/linux/v6.11.2/C/ident/rt_priority
https://elixir.bootlin.com/linux/v6.11.2/C/ident/sched_entity
https://elixir.bootlin.com/linux/v6.11.2/C/ident/se
https://elixir.bootlin.com/linux/v6.11.2/C/ident/sched_rt_entity
https://elixir.bootlin.com/linux/v6.11.2/C/ident/rt
https://elixir.bootlin.com/linux/v6.11.2/C/ident/list_head
https://elixir.bootlin.com/linux/v6.11.2/C/ident/tasks
https://elixir.bootlin.com/linux/v6.11.2/C/ident/mm_struct
https://elixir.bootlin.com/linux/v6.11.2/C/ident/mm
https://elixir.bootlin.com/linux/v6.11.2/C/ident/task_struct
https://elixir.bootlin.com/linux/v6.11.2/C/ident/__rcu
https://elixir.bootlin.com/linux/v6.11.2/C/ident/real_parent
https://elixir.bootlin.com/linux/v6.11.2/C/ident/task_struct
https://elixir.bootlin.com/linux/v6.11.2/C/ident/__rcu
https://elixir.bootlin.com/linux/v6.11.2/C/ident/parent
https://elixir.bootlin.com/linux/v6.11.2/C/ident/list_head
https://elixir.bootlin.com/linux/v6.11.2/C/ident/children
https://elixir.bootlin.com/linux/v6.11.2/C/ident/list_head
https://elixir.bootlin.com/linux/v6.11.2/C/ident/sibling

#define for_each_process(p) \
for (p = &init_task ; (p = next_task(p)) != &init_task ;)

/*To Iterate*/
struct task_struct *task;
for_each_process(task) {

int state = READ_ONCE((task)->__state)

task_is_running(task)
task_is_traced(task)
task_is_stopped(task)
task_is_stopped_or_traced(task)
is_special_task_state(state)

https://elixir.bootlin.com/linux/v6.11.2/C/ident/for_each_process
https://elixir.bootlin.com/linux/v6.11.2/C/ident/init_task
https://elixir.bootlin.com/linux/v6.11.2/C/ident/next_task
https://elixir.bootlin.com/linux/v6.11.2/C/ident/init_task
https://elixir.bootlin.com/linux/v6.11.2/C/ident/task_is_running
https://elixir.bootlin.com/linux/v6.11.2/C/ident/task
https://elixir.bootlin.com/linux/v6.11.2/C/ident/task_is_traced
https://elixir.bootlin.com/linux/v6.11.2/C/ident/task
https://elixir.bootlin.com/linux/v6.11.2/C/ident/task_is_stopped
https://elixir.bootlin.com/linux/v6.11.2/C/ident/task
https://elixir.bootlin.com/linux/v6.11.2/C/ident/task_is_stopped_or_traced
https://elixir.bootlin.com/linux/v6.11.2/C/ident/task
https://elixir.bootlin.com/linux/v6.11.2/C/ident/is_special_task_state

Process Scheduling

Process scheduler selects
among available processes for
next execution on CPU core

● Goal
○ Maximize CPU use (CPU

utilization),
● quickly switch processes

onto CPU core

○ Switch a CPU core among
processes so frequently
that users can interact with
each program while it is
running .

Process Scheduling-implementation

● Maintains scheduling queues of processes
○ Ready queue – set of all processes residing in main memory, ready and waiting to execute

○ Wait queues – set of processes waiting for an event (i.e., I/O)

○ Processes migrate among the various queues

Ready and Wait Queues

● Processes that are waiting for a certain event to occur — such as completion of I/O — are placed in a wait
queue

● As processes enter the system, they are put into a ready queue,
○ where they are ready and waiting to execute on a CPU’s core

Representation of Process Scheduling

CPU Switch From Process to Process
A context switch occurs when the CPU switches from one process to
another.

Context Switch

● When CPU switches to another process, the system must save the
state of the old process and load the saved state for the new process
via a context switch

● Context of a process represented in the PCB

● Context-switch time is pure overhead; the system does no useful work
while switching

○ The more complex the OS and the PCB 🡺 the longer the context switch

● Time dependent on hardware support

○ Some hardware provides multiple sets of registers per CPU 🡺 multiple contexts loaded
at once

Multitasking in Mobile Systems

● Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

● Due to screen real estate, user interface limits iOS provides for a

○ Single foreground process- controlled via user interface

○ Multiple background processes– in memory, running, but not on the display, and with
limits

■ Limits include single, short task, receiving notification of events, specific
long-running tasks like audio playback

A book on macOS

https://newosxbook.com/home.html

https://newosxbook.com/jbooks.html

https://newosxbook.com/MOXiI.pdf

https://newosxbook.com/home.html
https://newosxbook.com/jbooks.html
https://newosxbook.com/MOXiI.pdf

Android details

● Android runs foreground and background, with fewer limits (Processes
and app lifecycle | Android Developers)

● When deciding how to classify a process, the system bases its decision
on the most important level found among all the components currently
active in the process (see Activity, Service, and BroadcastReceiver).

● Activity, Service, and BroadcastReceiver impact the lifetime of the
application's process.
○ system determines which processes to kill when low on memory

https://developer.android.com/guide/components/activities/process-lifecycle
https://developer.android.com/guide/components/activities/process-lifecycle
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/content/BroadcastReceiver

Based on Activity, Service, and BroadcastReceiver

● Foreground, visible, service, or cached process

https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/content/BroadcastReceiver

● A foreground process is one that is
required for what the user is currently
doing.

○ It is running an Activity at the top
of the screen that the user is
interacting with

○ It has a BroadcastReceiver that
is currently running

○ It has a Service that is currently
executing code in one of its
callbacks.

● A visible process is doing work that the
user is currently aware of, so killing it has a
noticeable negative impact on the user
experience.

○ It is running an Activity that is
visible to the user on-screen but not
in the foreground

○ It has a Service that is running as a
foreground service, through
Service.startForeground()

○ It is hosting a service that the system
is using for a particular feature that
the user is aware of, such as a live
wallpaper or an input method service

Processes and app lifecycle | Android Developers

https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service#startForeground(int,%20android.app.Notification)
https://developer.android.com/reference/android/app/Service#startForeground(int,%20android.app.Notification)
https://developer.android.com/guide/components/activities/process-lifecycle

● A service process is one holding a
Service that has been started with
the startService() method.
○ Though these processes are not

directly visible to the user, they are
generally doing things that the
user cares about (such as
background network data upload
or download),

○ so the system always keeps such
processes running unless there is
not enough memory to retain all
foreground and visible processes.

● A cached process is one that
is not currently needed, so the
system is free to kill it as
needed when resources like
memory are needed
elsewhere.
○ In a normally behaving system,

these are the only processes
involved in resource
management

Processes and app lifecycle | Android Developers

https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/content/Context#startService(android.content.Intent)
https://developer.android.com/guide/components/activities/process-lifecycle

Operations on Processes

● System must provide mechanisms for:

○ Process creation

○ Process termination

Process Creation

● Parent process create children processes, which, in turn create other
processes, forming a tree of processes

● Generally, process identified and managed via a process identifier (pid)
● Resource sharing options

○ Parent and children share all resources

○ Children share subset of parent’s resources

○ Parent and child share no resources

● Execution options
○ Parent and children execute concurrently

○ Parent waits until children terminate

A Tree of Processes in Linux

Process Creation (Cont.)
● Address space

○ Child duplicate of parent

○ Child has a program loaded into it

● UNIX examples

○ fork() system call creates new process

○ exec() system call used after a fork() to replace the process’ memory
space with a new program

○ Parent process calls wait()waiting for the child to terminate

C Program Forking Separate Process
#include < sys/types.h >
#include < stdio.h >
#include < unistd.h >
int main(){

pid_t pid;
/* fork a child process */
pid = fork();
if (pid < 0){ /* error occurred */

fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0){ /* child process */

execlp("/bin/ls", "ls", NULL);
}
else{ /* parent process */

/* parent will wait for the child to complete */
wait(NULL);
printf("Child Complete");

}
return 0;

}

Creating a
Separate

Process via
Windows API

#include < stdio.h >
#include < windows.h >
int main(VOID) {

STARTUPINFO si;
PROCESS INFORMATION pi;
/* allocate memory */
ZeroMemory(&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory(&pi, sizeof(pi));
/* create child process */
if (!CreateProcess(NULL, /* use command line */

"C: ∖∖ WINDOWS ∖∖ system32 ∖∖ mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /* don’t inherit thread handle */
FALSE, /* disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block */
NULL, /* use parent’s existing directory */
&si, &pi)) {
fprintf(stderr, "Create Process Failed");
return -1;

}
/* parent will wait for the child to complete */
WaitForSingleObject(pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);

}

Process Termination

● Process executes last
statement and then asks the
operating system to delete it
using the exit() system call.

○ Returns status data from
child to parent (via wait())

○ Process’ resources are
deallocated by operating
system

●

● Parent may terminate the execution
of children processes using the
kill() system call. Some reasons
for doing so:

○ Child has exceeded allocated
resources

○ Task assigned to child is no longer
required

○ The parent is exiting, and the
operating systems does not allow a
child to continue if its parent
terminates

Process Termination

● Some operating systems do not
allow child to exist if its parent
has terminated.

○ If a process terminates, then all
its children must also be
terminated.
■ cascading termination. All

children, grandchildren, etc., are
terminated.

■ The termination is initiated by the
operating system.

● The parent process may wait for
termination of a child process by
using the wait()system call.

● The call returns status
information and the pid of the
terminated process

 pid = wait(&status);
○ If no parent waiting (did not

invoke wait()) process is a
zombie

○ If parent terminated without
invoking wait(), process is an
orphan

XNU process life cycle

https://github.com/apple-oss-distributions/xnu/blob/main/bsd/sys/proc.h
fig4.1 in https://newosxbook.com/MOXiI.pdf

https://github.com/apple-oss-distributions/xnu/blob/main/bsd/sys/proc.h
https://newosxbook.com/MOXiI.pdf

#include <unistd.h>

#include <stdio.h>

int main(int argc, char **argv){

 int rc = fork(); /* This returns twice*/

 int child = 0;

 switch (rc) {

 case -1:

 /* this only happens if the system is severely low on resources,

 * or the user's process limit (ulimit -u) has been exceeded

 */

 fprintf(stderr, "Unable to fork!\n");

 return (1);

 case 0:

 printf("I am the child! I am born id:%d\n", getpid());

 child++;

 break;

 default:

 printf("I am the parent! Going to sleep and now wait()ing\n");

 sleep(60);

 }

 printf("%s exiting\n", (child ? "child" : "parent"));

 return (0);

}

$./a.out &
$ ps a

Zombie example

https://newosxbook.com/MOXiI.pdf

https://newosxbook.com/MOXiI.pdf

Android Process Importance Hierarchy

● Mobile operating systems often have to terminate processes to reclaim
system resources such as memory. From most to least important:
○ Foreground process

○ Visible process

○ Service process

○ Background process

○ Empty process

● Android will begin terminating processes that are least important.
○ the states are saved before the termination

Interprocess Communication (IPC)

Multiprocess Architecture – Chrome Browser

● Many web browsers ran as single process (some still do)

○ If one web site causes trouble, entire browser can hang or crash

● Google Chrome Browser is multiprocess with 3 different types of processes:

○ Browser process manages user interface, disk and network I/O

○ Renderer process renders web pages, deals with HTML, Javascript.

● A new renderer created for each website opened

● Runs in sandbox restricting disk and network I/O, minimizing effect of security exploits

○ Plug-in process for each type of plug-in

https://www.chromium.org/developers/design-documents/multi-process-architecture/

https://www.chromium.org/developers/design-documents/multi-process-architecture/

https://www.chromium.org/developers/design-documents/multi-process-architecture/

https://www.chromium.org/developers/design-documents/multi-process-architecture/

Interprocess Communication

● Processes within a system may be independent or cooperating
● Cooperating process can affect or be affected by other processes,

including sharing data

● Reasons for cooperating processes:

○ Information sharing

○ Computation speedup

○ Modularity

○ Convenience

● Cooperating processes need interprocess communication (IPC)

Two models of IPC
(a) Shared memory. (b) Message passing.

Message passing
● pros: secure, flexible(remote or

local), error handling
● cons: Latency, overhead,

complexity

Shared memory
○ fast, efficient(no overhead), ideal

for large data sharing
○ needs synchronization, security,

management

Producer-Consumer Problem

● Paradigm for cooperating processes:

○ producer process produces information that is consumed by a consumer process

● Two variations:

○ unbounded-buffer places no practical limit on the size of the buffer:

■ Producer never waits

■ Consumer waits if there is no buffer to consume

○ bounded-buffer assumes that there is a fixed buffer size

■ Producer must wait if all buffers are full

■ Consumer waits if there is no buffer to consume

IPC – Shared Memory

● An area of memory shared
among the processes that wish
to communicate

● The communication is under the
control of the users processes
not the operating system.

● Major issues is to provide
mechanism that will allow the
user processes to synchronize
their actions when they access
shared memory.

Bounded-Buffer – Shared-Memory Solution

● Shared data
#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

● Solution is correct, but can only use BUFFER_SIZE-1 elements

Producer Process – Shared Memory

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

Consumer Process – Shared Memory

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

● this example is a solution ONLY for 1-producer and 1-consumer (busy waiting)

This solution to the producer-consumer problem is from “Proving the Correctness of
Multiprocess Programs,” by L. Lamport, IEEE Transactions on Software Engineering,
SE-3(2) 1977: 125-143.

What about Filling all the Buffers?

● consumer-producer problem fills all the buffers.

○ an integer counter that keeps track of the number of full buffers.

○ Initially, counter is set to 0.

○ The integer counter is incremented by the producer after it produces a new
buffer.

○ The integer counter is and is decremented by the consumer after it consumes a
buffer.

Producer

while (true) {
/* produce an item in next

produced */

while (counter == BUFFER_SIZE)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

 counter--;

/* consume the item in next
consumed */

}

Consumer

Race Condition

Race condition - Wikipedia is the condition of an electronics, software, or other system
where the system's substantive behavior is dependent on the sequence or timing of
other uncontrollable events.

Process 1 Process 2 Integer value

0

read value ← 0

increase value 0

write back → 1

read value ← 1

increase value 1

write back → 2

https://en.wikipedia.org/wiki/Race_condition

Race Condition

● Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

counter-- could be implemented as

 register2 = counter
 register2 = register2 - 1
 counter = register2

counter++ could be implemented as

 register1 = counter
 register1 = register1 + 1
 counter = register1

Race Condition (Cont.)

● Question – why was there no race condition in the
first solution (where at most N – 1) buffers can be
filled?
○ Her iki çözümde de race conditon var. Bu kısım tam doğru değil!

■ e.g.,1 den fazla producer ve/veya 1den fazla consumer
■ yine read/write arasinda sync olmadigi icin, siralari

degisebilir

IPC – Message
Passing

● Processes communicate with each
other without resorting to shared
variables

● IPC facility provides two
operations:
○ send(destination, &message);

○ receive(source, &message);

● The message size is either fixed
or variable

Message Passing (Cont.)

● If processes P and Q wish to communicate, they need to:
○ Establish a communication link between them

○ Exchange messages via send/receive

● Implementation issues:
○ How are links established?

○ Can a link be associated with more than two processes?

○ How many links can there be between every pair of communicating processes?

○ What is the capacity of a link?

○ Is the size of a message that the link can accommodate fixed or variable?

○ Is a link unidirectional or bi-directional?

Implementation of Communication Link

● Physical:
○ Shared memory

○ Hardware bus

○ Network

● Logical:
○ Direct or indirect

○ Synchronous or asynchronous

○ Automatic or explicit buffering

Direct Communication

● Processes must name each other explicitly:

○ send (P, message) – send a message to process P

○ receive(Q, message) – receive a message from process Q

● Properties of communication link

○ Links are established automatically

○ A link is associated with exactly one pair of communicating processes

○ Between each pair there exists exactly one link

○ The link may be unidirectional, but is usually bi-directional

Indirect Communication

● Messages are directed and received from mailboxes (also referred to
as ports)

○ Each mailbox has a unique id

○ Processes can communicate only if they share a mailbox

● Properties of communication link

○ Link established only if processes share a common mailbox

○ A link may be associated with many processes

○ Each pair of processes may share several communication links

○ Link may be unidirectional or bi-directional

● Operations

○ Create a new mailbox (port)

○ Send and receive messages through mailbox

○ Delete a mailbox

● Primitives are defined as:

○ send(A, message) – send a message to mailbox A

○ receive(A, message) – receive a message from mailbox A

Indirect Communication (Cont.)

● Mailbox sharing

○ P1, P2, and P3 share mailbox A

○ P1, sends; P2 and P3 receive

○ Who gets the message?

● Solutions

○ Allow a link to be associated with at most two processes

○ Allow only one process at a time to execute a receive operation

○ Allow the system to select arbitrarily the receiver. Sender is notified who the receiver
was.

Indirect Communication (Cont.)

Synchronization

● Blocking is considered synchronous
○ Blocking send -- the sender is blocked until the message is received

○ Blocking receive -- the receiver is blocked until a message is available

● Non-blocking is considered asynchronous
○ Non-blocking send -- the sender sends the message and continue

○ Non-blocking receive -- the receiver receives:

■ A valid message, or
■ Null message

● Different combinations possible
○ If both send and receive are blocking, we have a rendezvous

Message passing may be either blocking or non-blocking

● Producer
 message next_produced;

 while (true) {
/* produce an item in next_produced */

 send(next_produced);
 }

● Consumer
 message next_consumed;

 while (true) {
 receive(next_consumed)

/* consume the item in next_consumed */
 }

Producer-Consumer: Message Passing

Buffering

● Queue of messages attached to the link.

● Implemented in one of three ways
1. Zero capacity – no messages are queued on a link.

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

Examples of IPC
Systems - POSIX

● POSIX Shared Memory
○ Process first creates shared memory

segment
shm_fd =

shm_open(name,

O_CREAT | O_RDWR,

0666);

○ Also used to open an existing segment

○ Set the size of the object

 ftruncate(shm_fd, 4096);
○ Use mmap() to memory-map a file pointer

to the shared memory object

○ Reading and writing to shared memory is
done by using the pointer returned by
mmap().

IPC POSIX Producer
#include < stdio.h >#include< stdlib.h >#include< string.h >#include< fcntl.h >
#include < sys/shm.h >#include< sys/stat.h >#include < sys/mman.h >
int main() {

const int SIZE = 4096; /* the size (in bytes) of shared memory object */
const char *name = "OS"; /* name of the shared memory object */

/* strings written to shared memory */
const char *message0 = "Hello", *message1 = "World!";
int fd; /* shared memory file descriptor */

char *ptr; /* pointer to shared memory obect */

/* create the shared memory object */
fd = shm_open(name, O_CREAT | O_RDWR, 0666);
/* configure the size of the shared memory object */
ftruncate(fd, SIZE);
/* memory map the shared memory object */
ptr = (char *)mmap(0, SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

/* write to the shared memory object */
sprintf(ptr, "%s", message0);
ptr += strlen(message0);
sprintf(ptr, "%s", message1);
ptr += strlen(message1);
return 0;

}

IPC POSIX Consumer
#include < sys/mman.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/shm.h>
#include <sys/stat.h>
int main() {

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;
/* name of the shared memory object */
const char *name = "OS";
/* shared memory file descriptor */
int fd;
/* pointer to shared memory obect */
char *ptr;
/* open the shared memory object */
fd = shm open(name, O_RDONLY, 0666);
/* memory map the shared memory object */
ptr = (char *)mmap(0, SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
/* read from the shared memory object */
printf("%s", (char *)ptr);
/* remove the shared memory object */
shm unlink(name);
return 0;

}

Examples of IPC Systems - Mach

● Mach communication is message based

○ Even system calls are messages

○ Each task gets two ports at creation - Kernel
and Notify

○ Messages are sent and received using the
mach_msg() function

● Ports needed for communication, created
via

 mach_port_allocate()

● Send and receive are flexible; for example
four options if mailbox full:

■ Wait indefinitely

■ Wait at most n milliseconds

■ Return immediately

■ Temporarily cache a message

Mach Project Publications and Related
Documents

The GNU Mach Reference Manual

http://www.cs.cmu.edu/afs/cs/project/mach/public/www/doc/documents_top.html
http://www.cs.cmu.edu/afs/cs/project/mach/public/www/doc/documents_top.html
https://www.gnu.org/software/hurd/gnumach-doc/index.html

Mach Messages

#include<mach/mach.h>

struct message {
mach_msg_header_t header;
int data;

};

mach port t client;
mach port t server;

Mach Message Passing - Client
mach_msg_return_t mach_msg(

mach_msg_header_t *msg, mach_msg_option_t option,

mach_msg_size_t send_size, mach_msg_size_t rcv_size,

mach_port_t rcv_name, mach_msg_timeout_t timeout,

mach_port_t notify)

Mach Message Passing - Server

Mach another example

kern_return_t err;

mach_port_t rcv_port;

/*create a mach port*/

err = mach_port_allocate(mach_task_self(),

MACH_PORT_RIGHT_RECEIVE,

&rcv_port);

if (err != KERN_SUCCESS) {

perror("error : could not allocate any port\n");

exit(err);

}

struct integer_message {

mach_msg_header_t head;

mach_msg_type_t type;

int inline_integer;

};

https://hurdextras.nongnu.org/ipc_guide/mach_ipc_basic_concepts.html

https://hurdextras.nongnu.org/ipc_guide/mach_ipc_basic_concepts.html

#define _GNU_SOURCE

#include <mach.h>

#include <stdio.h>

#include <error.h>

struct integer_message{

mach_msg_header_t head;

mach_msg_type_t type;

int inline_integer;

};

void

send_integer(mach_port_t destination, int i){

kern_return_t err;

struct integer_message message;

/* (i.a) Fill the header fields : */

message.head.msgh_bits =

MACH_MSGH_BITS_REMOTE(MACH_MSG_TYPE_MAKE_SEND);

message.head.msgh_size = sizeof(struct integer_message);

message.head.msgh_local_port = MACH_PORT_NULL;

message.head.msgh_remote_port = destination;

/* (i.b) Explain the message type (an integer) */

message.type.msgt_name = MACH_MSG_TYPE_INTEGER_32;

message.type.msgt_size = 32;

message.type.msgt_number = 1;

message.type.msgt_inline = TRUE;

message.type.msgt_longform = FALSE;

message.type.msgt_deallocate = FALSE;

/* message.type.msgt_unused = 0; */ /* not needed, I think */

/* (i.c) Fill the message with the given integer : */

message.inline_integer = i;

/* (ii) Send the message : */https://hurdextras.nongnu.org/ipc_guide/mach_ipc_basic_concepts.html

https://hurdextras.nongnu.org/ipc_guide/mach_ipc_basic_concepts.html

void

send_integer(mach_port_t destination, int i){

…

/* (ii) Send the message : */

err = mach_msg(&(message.head), MACH_SEND_MSG,

message.head.msgh_size, 0, MACH_PORT_NULL,

M ACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);

/* (iii) Analysis of the error code;

if succes, print and acknowledge message and return */

if(err == MACH_MSG_SUCCESS){

printf("success: the message was queued\n");

}

else{

perror("error: some unexpected error ocurred!\n");

exit(err);

}

return;

}
https://hurdextras.nongnu.org/ipc_guide/mach_ipc_basic_concepts.html

https://hurdextras.nongnu.org/ipc_guide/mach_ipc_basic_concepts.html

Receive integer
void receive_integer(mach_port_t source, int *ip) {

kern_return_t err;

struct integer_message message;

/* (i) Fill the little thing we know about the message : */
/* message.head.msgh_size = sizeof(struct integer_message); */

/* (ii) Receive the message : */
err = mach_msg(&(message.head), MACH_RCV_MSG, 0, message.head.msgh_size,

source, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);

if (err == MACH_MSG_SUCCESS) {
printf("success: the message was received\n");

} else {
perror("error: Some unexpected error ocurred\n");
exit(err);

}

*ip = message.inline_integer;

return;
}

https://hurdextras.nongnu.org/ipc_guide/mach_ipc_basic_concepts.html
see also https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html and
references therein

https://hurdextras.nongnu.org/ipc_guide/mach_ipc_basic_concepts.html
https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html

Examples of IPC
Systems –
Windows

● Message-passing centric via advanced local
procedure call (LPC) facility

○ Only works between processes on the same system

○ Uses ports (like mailboxes) to establish and maintain
communication channels

○ Communication works as follows:

■ Server(subsystem) processes publish connection
port objects that are visible to all processes.

■ The client requests a connection to named port.

■ The server creates two private communication
ports

● client communication port

○ returns the handle to the client.

● server communication port

■ The client and server use the corresponding port
handle to send messages or callbacks and to listen
for replies.

Local Procedure Calls in Windows

Pipes

● allows two or more processes to communicate with
each other by creating a unidirectional or
bidirectional channel between them

● Issues:

○ Is communication unidirectional or bidirectional?

○ In the case of two-way communication, is it half or
full-duplex?

○ Must there exist a relationship (i.e., parent-child) between
the communicating processes?

○ Can the pipes be used over a network?

● Ordinary pipes – cannot be accessed from outside
the process that created it. Typically, a parent
process creates a pipe and uses it to communicate
with a child process that it created.

● Named pipes – can be accessed without a
parent-child relationship.

Ordinary Pipes

● Ordinary Pipes allow communication in standard producer-consumer style

● Producer writes to one end (the write-end of the pipe)

● Consumer reads from the other end (the read-end of the pipe)

● Ordinary pipes are therefore unidirectional

● Require parent-child relationship between communicating processes

● Windows calls these anonymous pipes

Named Pipes

● Named Pipes are more powerful than ordinary pipes

● Communication is bidirectional

● No parent-child relationship is necessary between the communicating
processes

● Several processes can use the named pipe for communication

● Provided on both UNIX and Windows systems

Communications in
Client-Server Systems

● Sockets

● Remote Procedure Calls

Sockets

● A socket is defined as an endpoint for communication

● Concatenation of IP address and port – a number included at start of
message packet to differentiate network services on a host

● The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

● Communication consists between a pair of sockets

● All ports below 1024 are well known, used for standard services

● Special IP address 127.0.0.1 (loopback) to refer to system on which
process is running

Socket Communication

Sockets in Java

● Three types of sockets

○ Connection-oriented (TCP)

○ Connectionless (UDP)

○ MulticastSocket class– data can be sent to multiple recipients

● Consider this “Date” server in Java:

Sockets in Java
The equivalent Date client

Remote Procedure Calls

● Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems

○ high level protocol that programs can use to request services from other programs

○ request-response based protocol

○ Again uses ports for service differentiation

● Stubs – client-side proxy for the actual procedure on the server

● On Windows, stub code compile from specification written in Microsoft
Interface Definition Language (MIDL)

An example model of RPC flow

https://www.ibm.com/docs/en/aix/7.3?topic=call-rpc-model

https://www.ibm.com/docs/en/aix/7.3?topic=call-rpc-model

Sequence of events

● The client calls the client stub.
○ The call is a local procedure call,

■ with parameters pushed on to the
stack in the normal way.

● The client stub packs the parameters into
a message and makes a system call to
send the message.

○ Packing the parameters is called
marshalling.

● The client's local operating system sends
the message from the client machine to
the server machine.

https://en.wikipedia.org/wiki/Remote_procedure_call

● The local OS on the server machine passes
the incoming packets to the server stub.

● The server stub unpacks the parameters from
the message.

○ Unpacking the parameters is called
unmarshalling.

● Finally, the server stub calls the server
procedure.

 The reply traces the same steps in the reverse
direction.

https://en.wikipedia.org/wiki/Remote_procedure_call

Remote Procedure Calls (Cont.)

● Data representation handled via External Data Representation (XDR)
format to account for different architectures

○ Big-endian and little-endian

● Remote communication has more failure scenarios than local

○ Messages can be delivered exactly once rather than at most once

● OS typically provides a rendezvous (or matchmaker) service to
connect client and server

