
Protection &
Security

● Intro to computer/information
security

● OS Protection

● OS Security

Introduction to
security

● The security of a system,
application, or protocol is
always relative to

○ A set of desired properties
○ An adversary with specific

capabilities
● For example, standard file

access permissions in Linux
and Windows are not effective
against an adversary who can
boot from a CD

this part of slides are based on
https://ics.uci.edu/~goodrich/teach
/cs201P/notes/Ch01-Introduction.

pdf
Introduction to Computer Security : Bishop, Matt

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf
https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf
https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf
https://www.amazon.com.tr/Introduction-Computer-Security-Hardcover-Bishop/dp/0321247442

What to protect?
Basic security components: (CIA)

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

What to protect?
Basic security components: (CIA)

Confidentiality

the concealment of information
or resources

● You cannot enter some
offices in university

● You cannot see information
of other students in
ubys.medeniyet.edu.tr

Access control mechanisms
support confidentiality.

● Example: a cryptographic
key: scramble data so only
people with the key can
read/understand

Integrity

the trustworthiness of data or
resources

● data integrity
● origin integrity

○ Authentication: source of
data

Integrity mechanisms

● prevention mechanisms
○ Blocking any unauthorized

attempts to change the data
○

● detection mechanisms.
○ report that the data’s

integrity is no longer
trustworthy

Availability

the ability to use the
information or
resource desire

Attempts to block
availability, called
denial of service
attacks

Tools for Confidentiality

Encryption: the transformation of information using a secret,

● the transformed information can only be read using another secret, called the
decryption key

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Tools for Confidentiality

● Access control: rules and policies that limit access to confidential
information to those people and/or systems with a “need to know.”

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Tools for Confidentiality

● Authentication: the
determination of the identity or
role that someone has. This
determination can be done in a
number of different ways

○ something the person has (like a
smart card or a radio key fob
storing secret keys),

○ something the person knows
(like a password),

○ something the person is (like a
human with a fingerprint).

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Tools for Confidentiality

● Authorization: the determination if a
person or system is allowed access to
resources, based on an access control
policy.

○ Such authorizations should prevent an
attacker from tricking the system into
letting him have access to protected
resources.

● Physical security: the establishment
of physical barriers to limit access to
protected computational resources.

○ Such barriers include locks on
cabinets and doors, the placement of
computers in windowless rooms, the
use of sound dampening materials,
and even the construction of buildings
or rooms with walls incorporating
copper meshes (called Faraday
cages) so that electromagnetic signals
cannot enter or exit the enclosure.

https://auth0.com/intro-to-iam/what-is-authorization

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://auth0.com/intro-to-iam/what-is-authorization
https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Tools for Confidentiality

● Authorization: the determination if a
person or system is allowed access to
resources, based on an access control
policy.

○ Such authorizations should prevent an
attacker from tricking the system into
letting him have access to protected
resources.

● Physical security: the establishment
of physical barriers to limit access to
protected computational resources.

○ Such barriers include locks on
cabinets and doors, the placement of
computers in windowless rooms, the
use of sound dampening materials,
and even the construction of buildings
or rooms with walls incorporating
copper meshes (called Faraday
cages) so that electromagnetic signals
cannot enter or exit the enclosure. e.g.: OpenID OAuth 2.0

https://www.geeksforgeeks.org/difference-between-authentication-and-authorization/

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://openid.net/
https://oauth.net/2/
https://www.geeksforgeeks.org/difference-between-authentication-and-authorization/
https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Integrity and integrity tools

Integrity: the property that information has not
be altered in an unauthorized way.

Tools:

Backups: the periodic archiving of data.

Checksums: the computation of a function that
maps the contents of a file to a numerical
value. A checksum function depends on the
entire contents of a file and is designed in a
way that even a small change to the input
file (such as flipping a single bit) is highly likely
to result in a different output value.

Data correcting codes: methods for storing
data in such a way that small changes can be
easily detected and automatically corrected.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Availability and Tools

Availability: the property that information is
accessible and modifiable in a timely fashion by
those authorized to do so.

Tools:

Physical protections: infrastructure meant to
keep information available even in the event of
physical challenges.

Computational redundancies: computers and
storage devices that serve as fallbacks in

the case of failures.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Other security concepts

Assurance refers to how
trust is provided and
managed in computer
systems.

Authenticity is the ability to
determine that statements, policies,
and permissions issued by persons
or systems are genuine.

Anonymity: the property that
certain records or transactions not
to be attributable to any individual.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Assurance refers to how trust is
provided and managed in computer
systems.

Trust management depends on:

● Policies, which specify
behavioral expectations that
people or systems have for
themselves and others.

○ the designers of an online
music system may specify
policies that describe how
users can access and copy
songs.

● Permissions, which describe
the behaviors that are allowed
by the agents that interact with a
person or system.

○ permissions for limited access
and copying to people who
have purchased certain songs.

● Protections, which describe
mechanisms put in place to
enforce permissions and
policies.

○ prevent people from
unauthorized access and
copying of its songs.

Anonymity: the property that certain
records or transactions not to be
attributable to any individual.

Tools:

● Aggregation: the combining of
data from many individuals so
that disclosed sums or averages
cannot be tied to any individual.

● Mixing: the intertwining of
transactions, information, or
communications in a way that
cannot be traced to any
individual.

● Proxies: trusted agents that are
willing to engage in actions for an
individual in a way that cannot be
traced back to that person.

● Pseudonyms: fictional identities
that can fill in for real identities in
communications and
transactions, but are otherwise
known only to a trusted entity.

Authenticity is the ability to
determine that statements,
policies, and permissions issued by
persons or systems are genuine.

Primary tool:

● digital signatures. These
are cryptographic
computations that allow a
person or system to commit
to the authenticity of their
documents in a unique way
that achieves
nonrepudiation, which is the
property that authentic
statements issued by some
person or system cannot be
denied.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Threats to security

A threat is a potential violation of security.

● The violation need not actually occur for
there to be a threat

The fact that the violation might occur means
that

● those actions that could cause it to occur
must be guarded against (or prepared for)

Attacks: Those actions

Attackers: Those who execute such actions

 Many threats fall into 4 main classes

1. Disclosure,
○ unauthorized access to information;

2. Deception
○ acceptance of false data

3. Disruption
○ interruption or prevention of correct

operation
4. Usurpation

○ unauthorized control of some part of a
system

Introduction to Computer Security : Bishop, Matt

https://www.amazon.com.tr/Introduction-Computer-Security-Hardcover-Bishop/dp/0321247442

Threats:Snooping (Eavesdropping)

The unauthorized interception of information, is
a form of disclosure

It is passive, suggesting simply that some entity
is listening to (or reading) communications or
browsing through files or system information

Wiretapping, or passive wiretapping, is a form
of snooping in which a network is monitored

Confidentiality services counter this threat

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Introduction to Computer Security : Bishop, Matt

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf
https://www.amazon.com.tr/Introduction-Computer-Security-Hardcover-Bishop/dp/0321247442

Threats:Modification or alteration

an unauthorized change of information,

● covers three classes of threat

 The goal may be deception

Unlike snooping, modification is active

● man-in-the-middle attack: an
intruder reads messages from the
sender and sends (possibly
modified) versions to the recipient

○ Integrity services counter this threat

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Introduction to Computer Security : Bishop, Matt

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf
https://www.amazon.com.tr/Introduction-Computer-Security-Hardcover-Bishop/dp/0321247442

Threats: Masquerading or spoofing

 an impersonation of one entity by another,

● is a form of both deception and usurpation.

 It lures a victim into believing that the entity with
which it is communicating is a different entity

Delegation(an allowed form of
masquerading): one entity authorizes a
second entity to perform functions on its behalf

if a user tries to log into a computer across the
Internet but instead reaches another computer
that claims to be the desired one,

● the user has been spoofed!

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Introduction to Computer Security : Bishop, Matt

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf
https://www.amazon.com.tr/Introduction-Computer-Security-Hardcover-Bishop/dp/0321247442

Threats: Repudiation of origin

a false denial that an entity sent (or created) something,

● a form of deception

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Introduction to Computer Security : Bishop, Matt

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf
https://www.amazon.com.tr/Introduction-Computer-Security-Hardcover-Bishop/dp/0321247442

Threats: Denial of receipt

a false denial that an entity received some information or message,

● a form of deception.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Introduction to Computer Security : Bishop, Matt

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf
https://www.amazon.com.tr/Introduction-Computer-Security-Hardcover-Bishop/dp/0321247442

Threats: Delay

a temporary inhibition of a service

● a form of usurpation
● can play a supporting role in deception.

Let’s say: delivery of a message or service
requires some time t;

● delay: an attacker can force the delivery to
take more than time t,

 If an entity is waiting for an authorization
message that is delayed,

● it may query a secondary server for the
authorization.

○ The attacker may be unable to
masquerade as the primary server,

■ may masquerade as that secondary
server and supply incorrect
information

Introduction to Computer Security : Bishop, Matt

https://www.amazon.com.tr/Introduction-Computer-Security-Hardcover-Bishop/dp/0321247442

Threats: Denial of service
a long-term inhibition of service

● a form of usurpation
● often used with other mechanisms to deceive

denial may occur

● at the source
○ preventing the server from obtaining the

resources needed to perform its function
● at the destination

○ blocking the communications from the server
● or along the intermediate path

○ discarding messages from either the client or
the server, or both

Availability mechanisms counter this threat.

Denial of service or delay may result from direct
attacks or from non-security related problems

● we view it as an attempt to breach system
security

○ it compromises system security,
○ or is part of a sequence of events leading

to the compromise of a system,

email spam to fill-up a
mail queue

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdfIntroduction to Computer Security : Bishop, Matt

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf
https://www.amazon.com.tr/Introduction-Computer-Security-Hardcover-Bishop/dp/0321247442

Security life cycle Human issues pervade each stage of the cycle and each cycle
feeds info back

Example:A major corporation decided to improve its security.

● It hired consultants,
● determined the threats,
● and created a policy.
● From the policy, the consultants derived several

specifications that the security mechanisms had to meet.
● They then developed a design that would meet the

specifications
● During the implementation phase,

○ the company discovered that employees could connect modems to the
telephones without being detected.

○ The design required all incoming connections to go through a firewall
○ The design had to be modified to divide systems into two classes:

■ systems connected to “the outside,” which were put outside the
firewall;

■ and all other systems, which were put behind the firewall.
○

● The operation and maintenance stage is critical to the life
cycle

○ The company discovers that several “trusted” hosts (those allowed to
log in without authentication) were physically outside the control of the
company.

■ This violates policy!

Introduction to Computer Security : Bishop, Matt

https://www.amazon.com.tr/Introduction-Computer-Security-Hardcover-Bishop/dp/0321247442

The Ten Security Principles

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdfIntroduction to Computer Security : Bishop, Matt

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf
https://www.amazon.com.tr/Introduction-Computer-Security-Hardcover-Bishop/dp/0321247442

Access Control

Users and groups

Authentication

Passwords

File protection

Access control lists

Which users can read/write which files?

Are my files really safe?

What does it mean to be root?

What do we really want to control?

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Access Control Matrices

columns are
objects

rows are
subjects

permissions

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Access Control Lists

It defines, for each object, o, a list, L, called o’s access control list, which enumerates all the subjects that
have access rights for o and, for each such subject, s, gives the access rights that s has for object o.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Capabilities

Takes a subject- centered approach to access
control.

It defines, for each subject s, the list of the
objects for which s has nonempty access control
rights, together with the specific rights for each
such object.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Role-based Access Control
Define roles and then specify access control rights for these roles, rather than for subjects directly

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Cryptographic concepts

Encryption: a means to allow two parties, customarily called Alice and Bob, to
establish confidential communication over an insecure channel that is subject to
eavesdropping.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Encryption and Decryption

The message M is called the plaintext.

Alice will convert plaintext M to an encrypted
form

● Alice uses an encryption algorithm E
that outputs a ciphertext C for M.

As equations:

C = E(M)

M = D(C)

The encryption and decryption algorithms are
chosen so that it is infeasible for someone other
than Alice and Bob to determine plaintext M
from ciphertext C.

ciphertext C can be transmitted over an insecure
channel that can be eavesdropped by an
adversary.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Classical cryptosystems (single-key or symmetric cryptosystems)

Substitution Ciphers

A substitution cipher
changes characters in the
plaintext to produce the
ciphertext.

● Transposition ciphers
● Cesar cipher
● Vigenère cipher

○ A longer key, uses a
tableau

○

One-Time Pad: if the key as long as the text

Introduction to Computer Security : Bishop, Matt

https://www.amazon.com.tr/Introduction-Computer-Security-Hardcover-Bishop/dp/0321247442

Public Key Cryptography

Two keys: encipherment and decipherment keys

Public (encipherment) key is public!

Private (decipherment) key is know only to
owner!

RSA

c = me mod n

m = cd mod n

● φ(n)
○ the number of numbers less than n with

no factors in common with n
● Choose e: e < n relatively prime to φ(n).
● Find d: ed mod φ(n) = 1

The public key is (e, n)

the private key is d

n = pq, p and q primes

In addition to confidentiality, RSA can provide
data and origin authentication.

Introduction to Computer Security : Bishop, Matt

https://www.amazon.com.tr/Introduction-Computer-Security-Hardcover-Bishop/dp/0321247442

Symmetric cryptosystems

Alice and Bob share a secret key, which is used
for both encryption and decryption.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Symmetric key Distribution

Requires each
pair of
communicating
parties to share a
(separate) secret
key.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Public-Key Cryptography

Separate keys are used for encryption and decryption.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Public Distribution

Only one key is needed for
each recipient

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Digital Signatures

Public-key encryption provides a method for doing digital signatures

To sign a message, M,

● Alice just encrypts it with her private key, SA, creating C = ESA(M).

Anyone can decrypt this message using Alice’s public key,

● M’ = DPA(C), and compare that to the message M.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Cryptographic Hash Functions

A checksum on a message, M, that is:

One-way:

● it should be easy to compute Y=H(M),
● but hard to find M given only Y

Collision-resistant:

● it should be hard to find two messages, M and N, such that H(M)=H(N).

Examples: SHA-1, SHA-256.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Message Authentication Codes

Allows for Alice and
Bob to have data
integrity, if they share
a secret key.

Given a message M,

Alice computes
H(K||M)

and sends M and this
hash to Bob.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Digital Certificates

certificate authority (CA) digitally signs a binding
between an identity and the public key for that
identity.

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Passwords

A short sequence of characters used as a
means to authenticate someone via a secret
that they know.

Userid:

Password:

What is a strong password

● UPPER/lower case characters
● Special characters
● Numbers

When is a password strong?

Seattle1

M1ke03

P@$$w0rd

TD2k5secV

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Password complexity
Odd characters make pass strong

A fixed 6 symbols password:

● Numbers
○ 106 = 1,000,000

● UPPER or lower case characters
○ 266 = 308,915,776

● UPPER and lower case characters
○ 526 = 19,770,609,664

● 32 special characters
○ (&, %, $, £, “, |, ^, §, etc.)
○ 326 = 1,073,741,824

94 practical symbols available

● 946 = 689,869,781,056

ASCII standard 7 bit 27 =128 symbols

● 1286 = 4,398,046,511,104

Password length

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Password Validity: Brute Force Test

Password does not change for 60 days

how many passwords should I try for each second?

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

Secure Passwords

A strong password includes characters from at
least three of the following groups:

eg. "I re@lly want to buy 11 Dogs!"

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

How a password is stored?

★ Add “salt” to avoid the same password being encrypted
to the same value
○ H(dog124+salt)
○ Save salt+ h(dog124+salt) https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

How a password is stored: random salt

Userna
me

String to be
hashed

Hashed value = SHA256

user1 password12
3

EF92B778BAFE771E89245B89ECBC08A44A4E166C06659911881F383D4473E94F

user2 password12
3

EF92B778BAFE771E89245B89ECBC08A44A4E166C06659911881F383D4473E94F

Userna
me

Salt value String to be hashed Hashed value = SHA256 (Password + Salt value)

user1 D;%yL9TS:5P
alS/d

password123D;%yL9TS:
5PalS/d

9C9B913EB1B6254F4737CE947EFD16F16E916F9D6EE5C1102A2
002E48D4C88BD

user2)<,-<U(jLez
y4j>*

password123)<,-<U(jL
ezy4j>*

6058B4EB46BD6487298B59440EC8E70EAE482239FF2B4E7CA69
950DFBD5532F2

https://en.wikipedia.org/wiki/Salt_(cryptography) https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

https://en.wikipedia.org/wiki/SHA256
https://en.wikipedia.org/wiki/SHA256
https://en.wikipedia.org/wiki/Salt_(cryptography)
https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch01-Introduction.pdf

OS protection

● A protection system describes
the conditions under which a
system is secure.

● In one protection model,
computer consists of a
collection of objects, hardware
or software

● Each object has a unique name
and can be accessed through a
well-defined set of operations

● Protection Goal - ensure that
each object is accessed
correctly and only by those
processes that are allowed to
do so

book slides for chapter 17 edited

Principles of Protection

● Guiding principle – principle of least privilege

○ Programs, users and systems should be given just enough privileges to perform their tasks

○ Properly set permissions can limit damage if entity has a bug, gets abused

○ Can be static (during life of system, during life of process)

○ Or dynamic (changed by process as needed) – domain switching, privilege escalation

○ Compartmentalization a derivative concept regarding access to data

■ Process of protecting each individual system component through the use of specific
permissions and access restrictions

Principles of Protection (Cont.)

● Must consider “grain” aspect

○ Rough-grained privilege management easier, simpler, but least privilege now done in large chunks

■ For example, traditional Unix processes either have abilities of the associated user, or of root

○ Fine-grained management more complex, more overhead, but more protective

■ File ACL lists, RBAC

● Domain can be user, process, procedure

● Audit trail – recording all protection-orientated activities, important to understanding
what happened, why, and catching things that shouldn’t

● No single principle is a panacea for security vulnerabilities – need defense in depth

Protection Rings

● introduced by the Multics operating system

● hierarchical protection domains

○ This privilege separation requires hardware support

○ Many modern CPU architectures (including Intel x86
architecture) include some form of ring protection

■ although most OSes do not fully utilize this
feature.

○ Also traps and interrupts

○ Hypervisors introduced the need for yet another ring

○ ARMv7 processors added TrustZone(TZ) ring to protect
crypto functions with access via new Secure Monitor Call
(SMC) instruction

■ Protecting NFC secure element and crypto keys from
even the kernel

https://en.wikipedia.org/wiki/Protection_ring

https://en.wikipedia.org/wiki/Multics
https://en.wikipedia.org/wiki/Protection_ring

X86

● x86 has 4 protection rings,
● it is more common for

architectures to only have
two.

● x86-64 still uses the same
2-bit (4 level) privilege
level mechanism

● Even on x86, most OS
only use ring 0 and 3.

https://en.wikipedia.org/wiki/Protection_ring

https://en.wikipedia.org/wiki/Protection_ring

Example: Android Trusty: A Trusted OS for Android devices

Trusty is a secure Operating System (OS)
that provides a Trusted Execution
Environment (TEE) for Android.

The Trusty OS runs on the same
processor as the Android OS, but Trusty is
isolated from the rest of the system by
both hardware and software.

Trusty and Android run parallel to each
other.

Trusty works upon the hardware isolation
provided by Arm TrustZone to create
software-level isolation – completing the
TEE Trusted Execution Environment on
Android.

Trusty TEE | Android Open Source Project
Android TEE: The vault of Android security

https://source.android.com/docs/security/features/trusty
https://emteria.com/blog/android-tee

Android TrustZone: Implementing TEE through hardware

ARM CPU Architecture

Domain of Protection

● Rings of protection separate functions into domains and order them
hierarchically

● Computer can be treated as processes and objects

○ Hardware objects (such as devices) and software objects (such as files, programs,
semaphores

● Process for example should only have access to objects it currently requires to
complete its task – the need-to-know principle

Domain of Protection (Cont.)

● Implementation can be via process operating in a protection domain

○ Specifies resources process may access

○ Each domain specifies set of objects and types of operations on them

○ Ability to execute an operation on an object is an access right

■ <object-name, rights-set>

○ Domains may share access rights

○ Associations can be static or dynamic

○ If dynamic, processes can domain switch

Domain Structure

● Access-right = <object-name, rights-set>
where rights-set is a subset of all valid operations that can be performed on the
object

● Domain = set of access-rights

Domain Implementation (UNIX)

● Domain = user-id

● The Unix and Linux access rights flags setuid and setgid allow users to run an executable
with the file system permissions of the executable's owner or group respectively and to
change behaviour in directories.

● Domain switch accomplished via file system

○ Each file has associated with it a domain bit (setuid bit)

○ When file is executed and setuid = on, then user-id is set to owner of the file being executed

○ When execution completes user-id is reset

● Domain switch accomplished via passwords

○ su command temporarily switches to another user’s domain when other domain’s password provided

● Domain switching via commands

○ sudo command prefix executes specified command in another domain (if original domain has privilege or
password given)

Domain Implementation (Android App IDs)
App permissions help support user
privacy by protecting access to the
following:

● Restricted data, such as
system state and users'
contact information

● Restricted actions, such as
connecting to a paired
device and recording audio

Work with user ID, FIDs
and GUIDs

Best practices for unique identifiers | Identity | Android Developers
Permissions on Android
Define a custom app permission | Android Developers

<permission
 android:name="com.example.myapp.permission.DEADLY_ACTIVITY"

https://developer.android.com/identity/user-data-ids
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/defining

Access Matrix

● View protection as a matrix (access matrix)

● Rows represent domains

● Columns represent objects

● Access(i, j) is the set of operations that a process executing in Domaini
can invoke on Objectj

Use of Access Matrix

● If a process in Domain Di tries to do “op” on object Oj, then “op” must be in the
access matrix

● User who creates object can define access column for that object
● Can be expanded to dynamic protection

○ Operations to add, delete access rights

○ Special access rights:

■ owner of Oi

■ copy op from Oi to Oj (denoted by “*”)
■ control – Di can modify Dj access rights
■ transfer – switch from domain Di to Dj

○ Copy and Owner applicable to an object

○ Control applicable to domain object

Use of Access Matrix (Cont.)

● Access matrix design separates mechanism from policy

○ Mechanism

■ Operating system provides access-matrix + rules

■ If ensures that the matrix is only manipulated by authorized agents and that rules are strictly
enforced

○ Policy

■ User dictates policy

■ Who can access what object and in what mode

● But doesn’t solve the general confinement problem

Access Matrix of Figure A with
Domains as Objects

Access Matrix with Copy Rights

Access Matrix With Owner Rights

Modified Access Matrix

Implementation of Access Matrix

● Generally, a sparse matrix
● Option 1 – Global table

○ Store ordered triples <domain, object, rights-set> in table

○ A requested operation M on object Oj within domain Di -> search table for < Di, Oj, Rk >
■ with M ∈ Rk

○ But table could be large -> won’t fit in main memory

○ Difficult to group objects (consider an object that all domains can read)

Implementation of Access Matrix (Cont.)

● Option 2 – Access lists for objects

○ Each column implemented as an access list
for one object

○ Resulting per-object list consists of ordered
pairs <domain, rights-set> defining all
domains with non-empty set of access rights
for the object

○ Easily extended to contain default set -> If M
∈ default set, also allow access

● Each column = Access-control list for one
object
Defines who can perform what operation

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

● Each Row = Capability List (like a key)
For each domain, what operations allowed
on what objects

Object F1 – Read

Object F4 – Read, Write, Execute

Object F5 – Read, Write, Delete,
Copy

Implementation of Access Matrix (Cont.)

● Option 3 – Capability list for domains

○ Instead of object-based, list is domain based

○ Capability list for domain is list of objects together with operations allows on them

○ Object represented by its name or address, called a capability

○ Execute operation M on object Oj, process requests operation and specifies capability as parameter

■ Possession of capability means access is allowed

○ Capability list associated with domain but never directly accessible by domain

■ Rather, protected object, maintained by OS and accessed indirectly

■ Like a “secure pointer”

■ Idea can be extended up to applications

Implementation of Access Matrix (Cont.)

● Option 4 – Lock-key

○ Compromise between access lists and capability lists

○ Each object has list of unique bit patterns, called locks

○ Each domain as list of unique bit patterns called keys

○ Process in a domain can only access object if domain has key that matches one of the locks

Comparison of Implementations

● Many trade-offs to consider

○ Global table is simple, but can be large

○ Access lists correspond to needs of users

■ Determining set of access rights for domain non-localized so difficult

■ Every access to an object must be checked

● Many objects and access rights -> slow

○ Capability lists useful for localizing information for a given process

■ But revocation capabilities can be inefficient

○ Lock-key effective and flexible, keys can be passed freely from domain to domain, easy
revocation

Comparison of Implementations (Cont.)

● Most systems use combination of access lists and capabilities

○ First access to an object -> access list searched

■ If allowed, capability created and attached to process

● Additional accesses need not be checked

■ After last access, capability destroyed

■ Consider file system with ACLs per file

Revocation of Access Rights

● Various options to remove the access right of a domain to an object

○ Immediate vs. delayed

○ Selective vs. general

○ Partial vs. total

○ Temporary vs. permanent

● Access List – Delete access rights from access list

○ Simple – search access list and remove entry

○ Immediate, general or selective, total or partial, permanent or temporary

Revocation of Access Rights (Cont.)

● Capability List – Scheme required to locate capability in the system before
capability can be revoked

○ Reacquisition – periodic delete, with require and denial if revoked

○ Back-pointers – set of pointers from each object to all capabilities of that object (Multics)

○ Indirection – capability points to global table entry which points to object – delete entry from
global table, not selective (CAL)

○ Keys – unique bits associated with capability, generated when capability created

■ Master key associated with object, key matches master key for access

■ Revocation – create new master key

■ Policy decision of who can create and modify keys – object owner or others?

Role-based Access Control

● Protection can be applied to non-file
resources

● Oracle Solaris 10 provides role-based
access control (RBAC) to implement least
privilege
○ Privilege is right to execute system call or use an

option within a system call

○ Can be assigned to processes

○ Users assigned roles granting access to privileges
and programs

■ Enable role via password to gain its privileges

○ Similar to access matrix

Mandatory Access Control (MAC) vs DAC

● Operating systems traditionally had
discretionary access control (DAC) to
limit access to files and other objects (for
example UNIX file permissions and
Windows access control lists (ACLs))

○ Discretionary is a weakness – users / admins
need to do something to increase protection

● Stronger form is mandatory access control,
which even root user can’t circumvent

○ Makes resources inaccessible except to their
intended owners

○ Modern systems implement both MAC and
DAC, with MAC usually a more secure,
optional configuration (Trusted Solaris,
TrustedBSD (used in macOS), SELinux),
Windows Vista MAC)

● At its heart, labels assigned to objects and
subjects (including processes)

○ When a subject requests access to an object,
policy checked to determine whether or not a
given label-holding subject is allowed to
perform the action on the object

Capability-Based Systems

● Hydra and CAP were first capability-based systems
● Now included in Linux, Android and others, based on POSIX.1e (that never became a

standard)
○ Essentially slices up root powers into distinct areas, each represented by a bitmap bit

○ Fine grain control over privileged operations can be achieved by setting or masking the bitmap

○ Three sets of bitmaps – permitted, effective, and inheritable

■ Can apply per process or per thread
■ Once revoked, cannot be reacquired
■ Process or thread starts with all privs, voluntarily decreases set during execution
■ Essentially a direct implementation of the principle of least privilege

● An improvement over root having all privileges but inflexible (adding new privilege
difficult, etc.)

Capability example

/etc/passwd

● this identifies a unique object on the
system, it does not specify access rights
and hence is not a capability.

●

/etc/passwd

O_RDWR
● This pair identifies an object along with a

set of access rights.
● The pair, however, is still not a capability

because the user process's possession of
these values says nothing about whether
that access would actually be legitimate.

int fd = open("/etc/passwd",

O_RDWR);

● The variable fd now contains the index of a
file descriptor in the process's file descriptor
table.

● This file descriptor is a capability.

https://en.wikipedia.org/wiki/Capability-based_security

https://en.wikipedia.org/wiki/Capability-based_security

Capabilities in POSIX.1e

A POSIX capability is not associated
with any object;

a process having
CAP_NET_BIND_SERVICE
capability can listen on any TCP
port under 1024.

This system is found in Linux.
capabilities(7) - Linux manual page

https://man7.org/linux/man-pages/man7/capabilities.7.html

Other Protection
Improvement

Methods

● System integrity protection (SIP)

○ Introduced by Apple in macOS 10.11

○ Restricts access to system files and resources,
even by root

○ Uses extended file attribs to mark a binary to
restrict changes, disable debugging and
scrutinizing

○ Also, only code-signed kernel extensions
allowed and configurably only code-signed
apps

● System-call filtering

○ Like a firewall, for system calls

○ Can also be deeper –inspecting all system call
arguments

○ Linux implements via SECCOMP-BPF
(Berkeley packet filtering)

Other Protection
Improvement Methods (Cont.)

● Sandboxing

○ Running process in limited environment

○ Impose set of irremovable restrictions early in startup of process (before main())

○ Process then unable to access any resources beyond its allowed set

○ Java and .net implement at a virtual machine level

○ Other systems use MAC to implement

○ Apple was an early adopter, from macOS 10.5’s “seatbelt” feature

■ Dynamic profiles written in the Scheme language, managing system calls even at the
argument level

■ Apple now does SIP, a system-wide platform profile

Other Protection
Improvement Methods (Cont.)

● Code signing allows a system to trust a program or script by using crypto hash
to have the developer sign the executable

○ So code as it was compiled by the author

○ If the code is changed, signature invalid and (some) systems disable execution

○ Can also be used to disable old programs by the operating system vendor (such as Apple)
cosigning apps, and then invaliding those signatures so the code will no longer run

Language-Based Protection

● Specification of protection in a programming language allows the high-level
description of policies for the allocation and use of resources

● Language implementation can provide software for protection enforcement
when automatic hardware-supported checking is unavailable

● Interpret protection specifications to generate calls on whatever protection
system is provided by the hardware and the operating system

Protection in Java 2

● Protection is handled by the Java Virtual Machine (JVM)

● A class is assigned a protection domain when it is loaded by the JVM

● The protection domain indicates what operations the class can (and cannot)
perform

● If a library method is invoked that performs a privileged operation, the stack is
inspected to ensure the operation can be performed by the library

● Generally, Java’s load-time and run-time checks enforce type safety

● Classes effectively encapsulate and protect data and methods from other
classes

Stack Inspection

Unix protection and security
holes
Microarchitectural attackscopied from

● https://www.scs.stanford.edu/24w
i-cs212/notes/protection.pdf

● https://ics.uci.edu/~goodrich/teac
h/cs201P/notes/01_SetUID.pdf

Examples

https://www.scs.stanford.edu/24wi-cs212/notes/protection.pdf
https://www.scs.stanford.edu/24wi-cs212/notes/protection.pdf
https://ics.uci.edu/~goodrich/teach/cs201P/notes/01_SetUID.pdf
https://ics.uci.edu/~goodrich/teach/cs201P/notes/01_SetUID.pdf

Example Unix protections

Each process has a User ID & one or more
group IDs

System stores with each file (in the inode):

- User who owns the file and group file is in

- Permissions for user, any one in file group, and
other

$ ls -l or $ stat -c "%a %A" ~/test/

-rwsr-Sr-t

which has setuid, setgid and sticky attributes set.

Each triad

first character

r: readable

second character

w: writable

third character

x: executable

s or t: setuid/setgid or sticky (also executable)

S or T: setuid/setgid or sticky (not executable)

https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Setgid
https://en.wikipedia.org/wiki/Sticky_bit
https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Setgid
https://en.wikipedia.org/wiki/Sticky_bit

Directories have
permissions too

drwxr-xr-x 56 root
wheel 4096 Apr 4 10:08
/etc

● Directory writable
only by root,
readable by
everyone

● Means non-root
users cannot
directly delete files
in /etc

Non-file permissions in Unix

$ ls -l /dev/tty1

crw--w---- 1 root tty 4, 1 Dec 30 08:35 /dev/tty1

Other access controls not represented in file system; must usually be root to do the
following:

● Bind any TCP or UDP port number less than 1024
● Change the current process’s user or group ID

○ usermod -a -G newgroup username

● Mount or unmount most file systems
○ mount /dev/sdb1 /mnt/media

● Create device nodes (such as /dev/tty1) in the file system
○ mknod <node> <mode> <major> <minor>

● Change the owner of a file
○ chown USER FILE

● Set the time-of-day clock; halt or reboot machine
○ date -s "12 OCT 2030 08:00:00"

○ reboot

○ suspend

Example login runs as root

List of Unix users with accounts typically stored
in files in /etc

- Files passwd, group, and often shadow or
master.passwd

For each user, files contain:

- Textual username (e.g., “dm”, or “root”)

- Numeric user ID, and group ID(s)

- One-way hash of user’s password: {salt,H(salt,
passwd)}

- Should have tunable difficulty d: {d, salt,Hd(salt,
passwd)}

- Other information, such as user’s full name, login
shell, etc.

/usr/bin/login runs as root

- Reads username & password from terminal

- Looks up username in /etc/passwd, etc.

- Computes H(salt,typed password) & checks
that it matches

- If matches, sets group ID & user ID
corresponding to username

- Execute user’s shell with execve system call

how should users change their passwords?

Stored in root-owned /etc/passwd & /etc/shadow
files

$ls -l /etc/shadow

-rw-r----- 1 root shadow 994 Jul 9 13:37
/etc/shadow

How would non-root users change their
password?

Solution: Setuid/setgid programs

- Run with privileges of file’s owner or group

- Each process has real and effective UID/GID

- real is user who launched setuid program

- effective is owner/group of file, used in access
checks

Two-Tier Approach

Implementing fine-grained access control in
operating systems make OS over complicated.

OS relies on extension to enforce finegrained
access control

Privileged programs are such extensions

Types of Privileged Programs

• Daemons

• Computer program that runs in the
background

• Needs to run as root or other privileged
users

• Set-UID Programs

• Widely used in UNIX systems

• Program marked with a special bit

Shown as “s” in file listings

- -rws--x--x 1 root root 52528 Oct 29 08:54
/bin/passwd

- Obviously need to own file to set the setuid bit

- Need to own file and be in group to set setgid
bit

SetUID concept

Allow user to run a program with the program owner’s privilege.

Allow users to run programs with temporary elevated privileges

Example: the passwd program

$ ls -l /usr/bin/passwd

-rwsr-xr-x 1 root root 41284 Sep 12 2012 /usr/bin/passwd

Set-UID mechanism: A Power Suit
mechanism implemented in Unix

SetUID concept

Every process has two User IDs.

● Real UID (RUID): Identifies real owner of
process

● Effective UID (EUID): Identifies privilege
of a process

○ Access control is based on EUID

When a normal program is executed,

RUID = EUID,

● they both equal to the ID of the user who
runs the program

When a Set-UID is executed,

RUID ≠ EUID.

● RUID still equal to the user’s ID, but EUID
equals to the program owner’s ID

Linux Capabilities

Wireshark needs network access, not ability to delete all
files

Linux subdivides root’s privileges into ∼ 40 capabilities(7)
- Linux manual page ,

e.g.:

- cap_net_admin – configure network interfaces (IP
address, etc.)

- cap_net_raw – use raw sockets (bypassing UDP/TCP)

- cap_sys_boot – reboot; cap_sys_time – adjust system
clock

Usually root gets all, but behavior can be modified by

“securebits” (see prctl(2) - Linux manual page)

Capabilities don’t survive execve unless bits are set in
both

thread & inode (exception: ambient capabilities)

“Effective” bit in inode acts like setuid for capability

$ ls -al /usr/bin/dumpcap

-rwxr-xr-- 1 root wireshark 116808 Jan 30 06:23
/usr/bin/dumpcap

$ getcap /usr/bin/dumpcap

/usr/bin/dumpcap
cap_dac_override,cap_net_admin,cap_net_raw=eip

[Oops, cap_dac_override ≈ root! neeeded for USB
capture]

• See also: getcap(8) - Linux manual page , setcap(8) -
Linux manual page , capsh(1) - Linux manual page

https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man2/prctl.2.html
https://man7.org/linux/man-pages/man8/getcap.8.html
https://man7.org/linux/man-pages/man8/setcap.8.html
https://man7.org/linux/man-pages/man8/setcap.8.html
https://man7.org/linux/man-pages/man1/capsh.1.html

Other permissions

When can process A send a signal to process B
with kill?

- Allow if sender and receiver have same
effective UID

- But need ability to kill processes you launch
even if suid

- So allow if real UIDs match, as well

- Can also send SIGCONT w/o UID match if in
same session

Debugger system call ptrace

- Lets one process modify another’s memory

- Setuid gives a program more privilege than
invoking user

- So don’t let a process ptrace a more privileged
process

- E.g., Require sender to match real & effective
UID of target

- Also disable/ignore setuid if ptraced target calls
exec

- Exception: root can ptrace anyone

Security holes in Unix

Even without root or setuid, attackers can trick
root owned processes into doing things. . .

$ cp /bin/cat ./mycat
$ sudo chown root maycat

#before we nable set-UID
 $./mycat /etc/shadow
./mycat: /etc/shadow: Permission denied

$ ls -l mycat
-rwxr-xr-x 1 root adaskin 44016 Dec 30 09:47 mycat

Enable set-UID
$ sudo chmod 4755 mycat
$ ls -l mycat
-rwsr-xr-x 1 root adaskin 44016 Dec 30 09:47 mycat

$./mycat /etc/shadow
…

A Set-UID program is just like any other program, except that it has a special marking, which a single bit called
Set-UID bit

How is Set-UID Secure?

Allows normal users to escalate privileges

• This is different from directly giving the
privilege (sudo command)

• Restricted behavior – similar to superman
designed computer chips

Unsafe to turn all programs into Set-UID

• Example: /bin/sh

• Example: vi

Attack Surfaces of Set-UID Programs

Attacks via User Inputs

User Inputs: Explicit Inputs

• Buffer Overflow

 Overflowing a buffer to run malicious code

• Format String Vulnerability

Changing program behavior using user inputs
as format strings

CHSH – Change Shell

• Set-UID program with ability to change default
shell programs

• Shell programs are stored in /etc/passwd file

Issues

• Failing to sanitize user inputs

• Attackers could create a new root account

Attack input

Attacks via System Inputs

System Inputs

Race Condition

● the time-of-check-to-time-of use
(TOCTTOU) flaws

● Symbolic link to privileged file from a
unprivileged file

● Influence programs
● Writing inside world writable folder

Even without root or setuid, attackers
can trick root owned processes into
doing things. . .

Attacks via System Inputs

Example: Want to clear unused files in /tmp

• Every night, automatically run this command as
root:

find /tmp -atime +3 -exec rm -f -- {} \;

find /tmp -atime +3 -exec rm -f -- {} \;

• find identifies files not accessed in 3 days

- executes rm, replacing {} with file name

• rm -f -- path deletes file path

- Note “--” prevents path from being parsed as
option

• What’s wrong here?

An attack

Time-of-check-to-time-of-use [TOCTTOU] bug

● find checks that /tmp/badetc is not symlink
● But meaning of file name changes before it is used

https://www.scs.stanford.edu/24wi-cs212/sched/readings/tocttou.pdf

xterm command

Provides a terminal window in X-windows

Used to run with setuid root privileges

● - Requires kernel pseudo-terminal (pty)
device

● - Required root privs to change ownership
of pty to user

● - Also writes protected utmp/wtmp files to
record users

Had feature to log terminal session to file

Programs may not clean up privileged
capabilities before downgrading

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666); /* ... */

xterm command

• Had feature to log terminal session to file

if (access (logfile, W_OK) < 0)

return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);

/* ... */

• xterm is root, but shouldn’t log to file user can’t write

• access call avoids dangerous security hole

- Does permission check with real, not effective UID

Wrong: Another TOCTTOU bug

An attack

Preventing TOCCTOU

Use new APIs that are relative to an opened
directory fd

● openat, renameat, unlinkat, symlinkat,
faccessat

● fchown, fchownat, fchmod, fchmodat, fstat,
fstatat

● O_NOFOLLOW flag to open avoids
symbolic links in last component

● But can still have TOCTTOU problems
with hardlinks

Lock resources, though most systems only
lock files (and locks are typically advisory)

Wrap groups of operations in OS
transactions

● - Microsoft supports for transactions on
Windows Vista and newer

● CreateTransaction Kernel Transaction
Manager - Win32 apps | Microsoft Learn ,
CommitTransaction, RollbackTransaction

● - A few research projects for POSIX [Valor]
[TxOS]

https://learn.microsoft.com/en-us/windows/win32/ktm/kernel-transaction-manager-portal?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/windows/win32/ktm/kernel-transaction-manager-portal?redirectedfrom=MSDN
http://www.fsl.cs.sunysb.edu/docs/valor/valor_fast2009.pdf
http://www.sigops.org/sosp/sosp09/papers/porter-sosp09.pdf

Remember: Capabilities

A confused deputy

● The compiler runs with
authority from two
sources

○ the invoker (i.e., the
programmer)

○ the system admin
(who installed the
compiler and
controls billing and
other info)

It is the deputy of two masters

When access a resource,
must select a capability, which
also selects a master

● this solves the problem

fort -o /sysx/bill file.f

https://www.cs.purdue.edu/homes/ninghui/courses/426_Fall10/handouts/426_Fall10_lect19.pdf

https://www.cs.purdue.edu/homes/ninghui/courses/426_Fall10/handouts/426_Fall10_lect19.pdf

Capabilities

• Can help avoid confused deputy problem Three general approaches to capabilities:

- Hardware enforced (Tagged architectures like
M-machine)

- Kernel-enforced (Hydra, KeyKOS)

- Self-authenticating capabilities (like Amoeba)

• Good history in [Levy]

http://www.cs.washington.edu/homes/levy/capabook/

Limitations of capabilities

IPC performance a losing battle with CPU
makers

● CPUs optimized for “common” code, not
context switches

● Capability systems usually involve many
IPCs

Capability model never fully took off as kernel API

● - Requires changes throughout application software
● - Call capabilities “file descriptors” or “Java pointers”

and people
● will use them
● - But discipline of pure capability system challenging so

far
● - People sometimes quip that capabilities are an OS

concept of the
● future and always will be

But real systems do use capabilities

● - Firefox security based on language-level object
capabilities

● - FreeBSD now ships with Capsicum, making
capabilities available

Capability Leaking

• In some cases, Privileged programs downgrade
themselves during execution

• Example: The su program

• This is a privileged Set-UID program

• Allows one user to switch to another user (say user1
to user2)

• Program starts with EUID as root and RUID as user1

• After password verification, both EUID and RUID
become user2’s (via privilege downgrading)

Such programs may lead to capability leaking

Programs may not clean up privileged
capabilities before downgrading

Attacks via Capability Leaking

Note: execlp(), execvp() and execvpe() duplicate the actions of the shell. These
functions can be attacked using the PATH Environment Variable

Attacks via Environment Variables

Behavior can be influenced by inputs that are
not visible inside a program.

Environment Variables: These can be set by a
user before running a program.

PATH Environment Variable

• Used by shell programs to locate a command if
the user does not provide the full path for the
command

• system(): call /bin/sh first

• system(“ls”)

• /bin/sh uses the PATH environment variable to
locate “ls”

• Attacker can manipulate the PATH variable and
control how the “ls” command is found

for attack examples see:
https://ics.uci.edu/~goodrich/teach/cs201P/notes/02_Environment_Variables.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/02_Environment_Variables.pdf

Buffer overflow attack

for examples and prevention see
https://ics.uci.edu/~goodrich/teach/cs201P/notes/04_Buffer_Overflow.pdf

https://ics.uci.edu/~goodrich/teach/cs201P/notes/04_Buffer_Overflow.pdf

Countermeasures for buffer overflow attacks

Developer approaches:

● • Use of safer functions like strncpy(),
strncat() etc,

● safer dynamic link libraries that check the
length of the data before copying.

OS approaches:

ASLR (Address Space Layout Randomization)

● To randomize the start location of the
stack that is every time the code is loaded
in the memory, the stack address
changes.

● not totally solve

Compiler approaches:

● Stack-Guard
● Canary check done by compiler.

Hardware approaches:

● Non-Executable Stack

Principle of Isolation

Principle: Don’t mix code and data.

Attacks due to violation of this principle :

• system() code execution

• Cross Site Scripting –

• SQL injection -

• Buffer Overflow attacks -

Principle of Least Privilege

A privileged program should be given the power
which is required to perform it’s tasks.

• Disable the privileges (temporarily or
permanently) when a privileged program doesn’t
need those.

In Linux, seteuid() and setuid() can be used to
disable/discard privileges.

Different OSes have different ways to do that

Example: Windows 10

● Security is based on user accounts
○ Each user has unique security ID

○ Login to ID creates security access token

■ Includes security ID for user, for user’s groups, and special privileges

■ Every process gets copy of token

■ System checks token to determine if access allowed or denied

● Uses a subject model to ensure access security

○ A subject tracks and manages permissions for each program that a user runs

● Each object in Windows has a security attribute defined by a security
descriptor

○ For example, a file has a security descriptor that indicates the access permissions for all users

Example: Windows 7 (Cont.)

● Win added mandatory integrity controls – assigns integrity label to each
securable object and subject

○ Subject must have access requested in discretionary access-control list to gain access to object

● Security attributes described by security descriptor

○ Owner ID, group security ID, discretionary access-control list, system access-control list

● Objects are either container objects (containing other objects, for example a
file system directory) or noncontainer objects
○ By default an object created in a container inherits permissions from the parent object

● Some Win 10 security challenges result from security settings being weak by
default, the number of services included in a Win 10 system, and the number
of applications typically installed on a Win 10 system

Microarchitectural attacks

Cache timing attacks

const char *table;

int victim (int secret_byte){

return table[secret_byte*64];

}

Accessing memory based on secret data can
leak the data

Approach 1: Flush/Evict + Reload

● Share table with victim process (shared lib
or deduplication)

● Flush table from cache (clflush instruction,
or overflow cache)

● After victim, time reads of table, fast line
tells you secret_byte

Approach 2: Prime + Probe

● No shared memory, but attacker primes
cache with its own buffer

● Victim’s table access evicts one of
attacker’s cache lines

● Slow cache line (+ cache mapping) reveals
secret data

Speculative execution key to performance

unsigned char *array1, *array2;

int array1_size, array2_size;

int lookup (int input){

if (input < array1_size)

return array2[array1[input] * 4096];

return -1;

}

CPU predicts branches to mask memory latency

e.g. predict input < array_size even if
array1_size not cached

Wait to get array1_size from memory before
retiring instructions

Squash incorrectly predicted instructions by
reverting registers

But can’t revert cache state, only registers

Example: intel Haswell

Spectre attack

unsigned char *array1, *array2;

int array1_size, array2_size;

int lookup (int input){

if (input < array1_size)

return array2[array1[input] * 4096];

return -1;

}

Say attacker supplies input, wants to read
array1[input]

- input can exceed bounds, reference any byte
in address space

Ensure array1 cached, but array1_size and
array2 uncached

Flush+reload attack on array2 now reveals
array1[input]

see https://spectreattack.com/spectre.pdf for
more

https://spectreattack.com/spectre.pdf

Many more variants of Spectre

Attack on JavaScript JIT

● Malicious JavaScript reads secrets outside
of JavaScript sandbox

eBPF compiles packet filters in kernel (e.g., for
tcpdump)

● Can generate code to reveal arbitrary
kernel memory

Can even use victim code that’s not supposed to
be executed

● - Mistrain branch predictor on indirect
branch

 Use other speculation channels

Mitigation

Replace array bounds checks with index
masking (used by Chrome)

return array2[array1[input&0xffff] * 4096]

- Limits distance of bounds violation

• Place JavaScript sandbox in separate address
space

XOR pointers with type-dependent poison
values (in JITs)

● xor pointers with random poison value

• Make CPUs a bit better about leaking state
through side channels

• Insert “gratuitous” memory barriers to prevent
speculation on sensitive data

• Unfortunately general solution still an open
problem

OS Security https://www.scs.stanford.edu/24wi-c
s212/notes/security.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/security.pdf
https://www.scs.stanford.edu/24wi-cs212/notes/security.pdf

