Chapter
13-14-15:
File-System
Interface &
Implementation

skipped slides are not

included in the exam(atlanan

slidelar sinava dahil degil)

File Concept
Access Methods
Disk and Directory Structure

Protection
FS implementation
Allocation
Crash Recovery
Other issues and systems
o NFS,
o WAFL

o efc.

File Concept

e Contiguous logical address space
e Types:
o Data
= Numeric
= Character
= Binary
o Program
e Contents defined by file’s creator
o Many types
= text file,
= source file,
= executable file

1l.tex 111 K8
.. Modified: Today 2:00 PM

File Attributes —

Kind: TeX Document
Size: 111,389 bytes (115 K8 on disk)
Where: /Users/greg/Dropbox/osc9e/tex
Created: Today 1:46 PM
Modified: Today 2:00 PM

® Name — only information kept in human-readable form Lbel:(x| @ B LU WSS
® Identifier — unique tag (number) identifies file within file gsm'” il
system ¥ More Info:

Last opened: Today 1:47 PM
¥ Name & Extension:

® Type — needed for systems that support different types

[11tex

® Location — pointer to file location on device
() Hide extension

® Size — current file size 'E“’i:“"""”f J

® Protection — controls who can do reading, writing, oot sbabccs
executing Change All...

- = - gm - . m

® Time, date, and user identification — data for v Sharing & Permissions:
protection, security, and usage monitoring You can read anc velte

® Information about files are kept in the directory structure, i aa e |t Rend S
which is maintained on the disk svervone. v o Access

® Many variations, including extended file attributes such
as file checksum

® Information kept in the directory structure File info Window on Mac OS X

+= [&] a

Directory Structure

® A collection of nodes containing information about all files

e Both the directory structure and the files reside on disk

File Operations

e Create

e Write — at write pointer location
® Read - at read pointer location
e Reposition within file - seek

e Delete

e Truncate

e Open (F) — search the directory structure on disk for entry F,, and
move the content of entry to memory

e Close (F)— move the content of entry F,in memory to directory
structure on disk

Open Files

® Several pieces of data are needed to manage open files:

O

O

Open-file table: tracks open files

File pointer: pointer to last read/write location, per process that
has the file open

File-open count: counter of number of times a file is open —to
allow removal of data from open-file table when last processes
closes it

Disk location of the file: cache of data access information

Access rights: per-process access mode information

File Locking

e Provided by some operating systems and file systems
o Similar to reader-writer locks

o Shared lock similar to reader lock — several processes can
acquire concurrently

o Exclusive lock similar to writer lock
® Mediates access to a file
e Mandatory or advisory:

o Mandatory — access is denied depending on locks held and
requested

o Advisory — processes can find status of locks and decide what to
do

Access Methods

A file is fixed length logical records
Sequential Access

Direct Access

Other Access Methods

Sequential Access

e Operations current position

beginning end

O read next

O write next
Brewind:ﬂ
O Reset read or write =)

© no read after last write (rewrite)

Direct Access

e Operations

O read n

O write n

O position to n
= read next
= write next
m rewrite n

n = relative block number

e Relative block numbers allow OS to decide where
file should be placed

Simulation of Sequential Access on Direct-access File

sequential access implementation for direct access
reset cp = 0;
read next read cp;
cp=cp+ 1,
write next write cp;
cp=cp+ 1;

Disk Structure

Disk can be subdivided into
partitions

Disks or partitions can be RAID
protected against failure

Disk or partition can be used raw
— without a file system, or
formatted with a file system

Partitions also known as
minidisks, slices

Entity containing file system is
known as a volume

Each volume containing a file
system also tracks that file
system’s info in device directory
or volume table of contents

In addition to general-purpose
file systems there are many
special-purpose file systems,
frequently all within the same
operating system or computer

A Typical File-system Organization

g directory b (directory b
partition A < flos \ disk 2
" > disk 1
(| director g
y partition C < _ =
files
" 2
partition B flea
>~ disk 3
LG 4

Types of File Systems

e \We mostly talk of general-purpose file systems

e But systems frequently have may file systems, some general- and
some special- purpose

e Consider Solaris has

O

O

tmpfs — memory-based volatile FS for fast, temporary 1/0

objfs — interface into kernel memory to get kernel symbols for debugging

ctfs — contract file system for managing daemons

lofs — loopback file system allows one FS to be accessed in place of another
procfs — kernel interface to process structures

ufs, zfs — general purpose file systems

Directory Structure

® A collection of nodes containing information about all files

e Both the directory structure and the files reside on disk

Operations Performed on Directory

Search for a file
Create a file
Delete a file
List a directory
Rename a file

Traverse the file system

Directory Organization

The directory is organized logically to obtain
e Efficiency — locating a file quickly

e Naming — convenient to users
o Two users can have same name for different files
o The same file can have several different names

e Grouping — logical grouping of files by properties, (e.g., all
Java programs, all games, ...)

Single-Level Directory

A single directory for all users

directory caj b‘ll a] tes‘f' dat! maifi cori] h

Naming problem
Grouping problem

Two-Level Directory

Separate directory for each user

master file
directory ‘ user 1 ’ userz‘ user3‘ user4‘
user file
dlemoryé)éé)z gcla étg\: éjjcg
Path name

Can have the same file name for different user
Efficient searching

No grouping capability

Tree-Structured Directories

root

spell

bin

progams

S

stat | mail | dist

& mail

prog | copy

5 b&ééé/ %

hex

NN 660 []

5565666

Acyclic-Graph Directories

e Have shared subdirectories and files

e Example

root | dict | spell

N

fist alf w |count count|\words| list

ol | ™ | o

» fist | rade| w7

3060

Acyclic-Graph Directories (Cont.)

Two different names (aliasing)

If dict deletes w/list = dangling pointer
Solutions:

o Backpointers, so we can delete all pointers.
= Variable size records a problem
o Backpointers using a daisy chain organization
o Entry-hold-count solution
New directory entry type
o Link — another name (pointer) to an existing file

© Resolve the link — follow pointer to locate the file

General Graph Directory

é

o

root avi tc fim
text | mail | count| book book

mail

unhex|

hyp

avi

count

_I=<1>

5

unhex

hex

R

General Graph Directory (Cont.)

e How do we guarantee no cycles?
o Allow only links to files not subdirectories

o Garbage collection

o Every time a new link is added use a cycle detection algorithm to
determine whether it is OK

Current Directory

e Can designate one of the directories as the current (working) directory
0 cd /spell/mail/prog

O type list
e Creating and deleting a file is done in current directory
e Example of creating a new file
o Ifin current directory is /mail
o The command
mkdir <dir-name>
o0 Results in:

mail

prog | copy |prt |[exp|count

o Deleting “mail” = deleting the entire subtree rooted by “mail”

Protection

e File owner/creator should be able to control:
o What can be done
o By whom
® Types of access
o Read
o Write
o Execute
o Append
O Delete

o List

Access Lists and Groups in Unix

e Mode of access: read, write, execute
® Three classes of users on Unix / Linux

RWX
a)owneraccess /7 = 111
RWX
b) group access 6 = 110
RWX
c) public access 1 = 001
o Ask manager to create a group owper graup pyblic
(unique name), say G, and add |
some users to the group. chmod 761 game

o For a file (say game) or _
subdirectory, define an appropriate
access.
chgrp G game

o Attach a group to a file

A Sample UNIX Directory Listing

-IT'W-TW-1--

drwxrwxr-x
drwxrwx---
-IW-I--T--
-I'WXI-XI-X
drwx--x--x

drwxrwxrwx

| pbg
S pbg
2 pbg
2 pbg
I pbg
| pbg
4 pbg
3 pbg
3 pbg

Sep 3 08:30
Jul 8 09.33
Jul 8 09:35
Aug 3 14:13
Feb 24 2003
Feb 24 2003
Jul 31 10:31
Aug 29 06:52
Jul 8 09:35

intro.ps
private/

doc/
student-proj/
program.c
program

lib/

mail/

test/

Windows 7 Access-Control List Management

ListPanel.java Properties
General | Security | Details | Previous Versions

Object name: H:\DATA\Pattems Material\Src'\ListPanel java

Group Oor user names:

52 SYSTEM
3 Gregory G. Gagne (ggagne@weusers int)

'7) FlleAdmlns(WCUSERS\F'IeAdmlns)
QRJ. Administrators (FILES\Administrators)

To change pemissions, click Edit.

Permissions for Guest Allow Deny

Full control

Modify

Read & execute
Read

Write

Special permissions

AR N NN

For special permissions or advanced settings, an ==
click Advanced. fedy

Leam about access control and pemissions

OK | [Cancel || ool

Chapter 14: File
System
Implementation

File-System Structure
File-System Operations
Directory Implementation
Allocation Methods
Free-Space Management
Efficiency and Performance
Recovery

Example: WAFL File System

File-System Structure

File structure
o Logical storage unit
o Collection of related information
File system resides on secondary storage (disks)

o Provided user interface to storage, mapping
logical to physical

o Provides efficient and convenient access to disk
by allowing data to be stored, located retrieved
easily

Disk provides in-place rewrite and random access

o 1/O transfers performed in blocks of sectors
(usually 512 bytes)

File control block (FCB) — storage structure
consisting of information about a file

Device driver controls the physical device
File system organized into layers

application programs

{

logical file system

{

file-organization module

{

basic file system

{

I/0O control

!

devices

Layered File
System

File System Layers

Device drivers manage |I/O devices at the I/O control layer

Given commands like

read drive1, cylinder 72, track 2, sector 10, into memory
location 1060

Outputs low-level hardware specific commands to hardware controller

Basic file system given command like “retrieve block 123" translates to
device driver

Also manages memory buffers and caches (allocation, freeing, replacement)
O Buffers hold data in transit
O Caches hold frequently used data

File organization module understands files, logical address, and physical
blocks

Translates logical block # to physical block #

Manages free space, disk allocation

application programs

{

logical file system

{

file-organization module

{

basic file system

{

I/0O control

!

devices

Layered File
System

File System Layers (Cont.)

e Logical file system manages metadata information

o Translates file name into file number, file handle, location by
maintaining file control blocks (inodes in UNIX)

o Directory management

o Protection

e Layering useful for reducing complexity and redundancy, but
adds overhead and can decrease performance

® |ogical layers can be implemented by any coding method
according to OS designer

File System Layers (Cont.)

e Many file systems, sometimes many within an operating system

®)

O

O

Each with its own format:

CD-ROM is ISO 9660;

Unix has UFS, FFS;

Windows has FAT, FAT32, NTFS as well as floppy, CD, DVD Blu-ray,

Linux has more than 130 types, with extended file system ext3 and
ext4 leading; plus distributed file systems, etc.)

New ones still arriving — ZFS, GoogleFS, Oracle ASM, FUSE

File-System Operations

We have system calls at the APl level, but how do we implement their
functions?

o On-disk and in-memory structures

Boot control block contains info needed by system to boot OS from
that volume

o Needed if volume contains OS, usually first block of volume

Volume control block (superblock, master file table) contains volume
details

o Total # of blocks, # of free blocks, block size, free block pointers or
array

Directory structure organizes the files
o Names and inode numbers, master file table

File Control Block (FCB)

e (OS maintains FCB per file, which contains many details about
the file

o Typically, inode number, permissions, size, dates

o Example

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

In-Memory File System Structures

Mount table storing file system mounts, mount points, file
system types

System-wide open-file table contains a copy of the FCB of
each file and other info

Per-process open-file table contains pointers to appropriate
entries in system-wide open-file table as well as other info

In-Memory File System Structures (Cont.)

« Figure 12-3(a) refers to opening a file
« Figure 12-3(b) refers to reading a file

, -
-

directory structure

open (file name) :’
directory structure el ek
user space kernel memory secondary storage
@)
T T 1

i

L1

/
data blocks

per-process system-wide file-control block
open-file table open-file table

|
:

read (index)

user space kernel memory secondary storage

Directory Implementation

e Linear list of file names with pointer to the data blocks
o Simple to program
o Time-consuming to execute
» Linear search time
= Could keep ordered alphabetically via
e linked list
e oOruse B+ tree
e Hash Table — linear list with hash data structure
o Decreases directory search time
o Collisions — situations where two file names hash to the same location

o Only good if entries are fixed size, or use chained-overflow method

Main tasks of file system

Associate bytes with name (files)

Associate names with each other (directories)

Don’t go away (ever)

Can implement file systems on disk, over network, in memory, in non-volatile
ram (NVRAM), on tape, w/ paper.

WEe'll focus on disk and generalize later

Vv b d

\Z

https://www.scs.stanford.edu/24wi-cs212/notes/file systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Why disks are different

» Disk = First state we’ve seen that doesn’t go away

i memory

disk

- So: Where all important state ultimately resides

» Slow (milliseconds access vs. nanoseconds for memory)

normalizeg
speée

Processor speed: 2 x/18mo

Disk access time: 7% /yr
_____..-—-—"—#

> year

* Huge (64-1,000x bigger than memory)

- How to organize large collection of ad hoc information?
- File System: Hierarchical directories, Metadata, Search

https://www.scs.stanford.edu/24wi-cs212/notes/file systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Disk vs Memory

TLC NAND
Disk Flash DRAM
Smallest write sector sector byte
Atomic write sector sector byte/word
Random read 8 ms 3-10 us 50 ns
Random write 8 ms 9-11 us* 50 ns

Sequential read 200 MB/s 550-2500 MB/s | > 10GB/s
Sequential write 200 MB/s 520-1500 MB/s* | > 10 GB/s
Cost $0.01-0.02/GB | $0.06-0.10/GB | $2.50-5/GiB
Persistence Non-volatile Non-volatile Volatile

*Flash write performance degrades over time

https://www.scs.stanford.edu/24wi-cs212/notes/file systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Disk review

* Disk reads/writes in terms of sectors, not bytes
- Read/write single sector or adjacent groups

* How to write a single byte? “Read-modify-write”

- Read in sector containing the byte :-:

- Modify that byte

- Write entire sector back to disk :-:

- Key: if cached, don’t need to read in

» Sector = unit of atomicity. I

- Sector write done completely, even if crash in middle
(disk saves up enough momentum to complete)

» Larger atomic units have to be synthesized by 0OS

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Some useful trends

Disk bandwidth and cost/bit improving
exponentially

- Similar to CPU speed, memory size, etc.

Seek time and rotational delay improving very
slowly

- Why? require moving physical object (disk arm)

Disk accesses a huge system bottleneck &
getting worse

- Bandwidth increase lets system (pre-)fetch large
chunks for about

the same cost as small chunk.

- Trade bandwidth for latency if you can get lots of
related stuff.

https://www.scs.stanford.edu/24wi-cs212/notes/file systems.pdf

Desktop memory size increasing faster than
typical workloads

- More and more of workload fits in file cache

- Disk traffic changes: mostly writes and new
data

Memory and CPU resources increasing

- Use memory and CPU to make better
decisions

- Complex prefetching to support more 10
patterns

- Delay data placement decisions to reduce
random 10

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Files: named bytes on disk

» File abstraction:
- User’s view: named sequence of bytes

foo.c—'|in'r main(f ... @

- FS’s view: collection of disk blocks
- File system’s job: translate name & offset to disk blocks:

{file, offset}—— FS —sdisk address

* File operations:

- Create afile, delete a file
- Read from file, write to file

» Want: operations to have as few disk accesses as possible &
have minimal space overhead (group related things)

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

What's hard about grouping blocks?

* Like page tables, file system metadata are simply data
structures used to construct mappings

- Page table: map virtual page # to physical page #
23 Page table >33

ha

- File metadata: map byte offset to disk block address
512 | Unixinode |——8003121

- Directory: map name to disk address or file #
foo.c > directory -

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

FS vs. VM

* In both settings, want location transparency

- Application shouldn’t care about particular disk blocks or physical
memory locations

* In some ways, FS has easier job than than VM:

- CPU time to do FS mappings not a big deal (= no TLB)

- Page tables deal with sparse address spaces and random access,
files often denser (0. . . filesize — 1), ~sequentially accessed

* In some ways FS’s problem is harder:

- Each layer of translation = potential disk access

- Space a huge premium! (But disk is huge?!?!) Reason?
Cache space never enough; amount of data you can get in one
fetch never enough

- Range very extreme: Many files <10 KB, some files many GB

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Some working intuitions

* FS performance dominated by # of disk accesses

- Say each access costs ~10 milliseconds
- Touch the disk 100 extra times = 1 second
- Can do billions of ALU ops in same time!

* Access cost dominated by movement, not transfer:
seek time + rotational delay + # bytes/disk-bw

- 1sector: 5ms+4ms+5us (= 512 B/(100 MB/s)) ~ 9ms
- 50 sectors: 5ms +4ms +.25ms =9.25ms
- Can get 50x the data for only ~3% more overhead!

* Observations that might be helpful:

- All blocks in file tend to be used together, sequentially
- Allfiles in a directory tend to be used together
- All names in a directory tend to be used together

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Common addressing patterns

* Sequential:

- File data processed in sequential order
- By far the most common mode
- Example: editor writes out new file, compiler reads in file, etc

* Random access:

- Address any block in file directly without passing through
predecessors

- Examples: data set for demand paging, databases

* Keyed access

- Search for block with particular values
- Examples: associative data base, index
- Usually not provided by OS

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Problem: how to track file’'s data

Disk management: * Things to keep in mind while designing file
structure:

- Need to keep track of where file contents are

on disk - Most files are small

- Must be able to use this to map byte offset to - Much of the disk is allocated to large files

disk block

- Many of the 1/O operations are made to large
- Structure tracking a file’s sectors is called an files

index node or inode _
- Want good sequential and good random
- Inodes must be stored on disk, too access

(what do these require?)

https://www.scs.stanford.edu/24wi-cs212/notes/file systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

e An allocation method refers to
how disk blocks are allocated for
files:

Allocation o Contuous
o File Allocation Table (FAT)
Methods

Contiguous Allocation Method

® An allocation method refers to how disk blocks are allocated for

files:

e Each file occupies set of contiguous blocks

©)

©)

Best performance in most cases

Simple — only starting location (block #) and length (number of
blocks) are required

Problems include:
= Finding space on the disk for a file,
= Knowing file size,

= External fragmentation, need for compaction off-line
(downtime) or on-line

Contiguous Allocation

R
A

count
o] 1L 201 3]
f
al] s[] e 7]
8] ol 110l J110]
tr
12 J13[]14[1501
16[]17[118 J19[]
mail
20121[22[123[]
24[125 26]27[]

list

28 J29[J30[131[]

directory

file start length

count 0 2
tr 14 3
mail 19 6
list 28 4
f 6 2

R

Extent-Based Systems

® Many newer file systems (i.e., Veritas

File System) use a modified contiguous
allocation scheme

® Extent-based file systems allocate disk
blocks in extents

® An extent is a contiguous block of disks
O Extents are allocated for file allocation

O Afile consists of one or more extents
APFS (Apple), HFS plus(Apple),
NTFS(windows), ext4 (Linux), etc.

In indirect/direct block addressing, logical and physical blocks are
mapped one-to-one,

in extent-based mapping, a range of logical blocks are mapped to
a range of physical blocks using a single extent structure.

Example File:
Extent Logical Blocks Physical Blocks Length
0 0 -3 104 - 107 4

1 4 112 1

struct extd_extent {
__le32 ee_block = ©;
__lele ee_len = 4;
__lel6 ee_start_hi
__le32 ee_start_lo

1
(&)
“e

104;
s

https://blogs.oracle.com/linux/post/extents-and-extent-allocati

on-in-ext4

https://blogs.oracle.com/linux/post/extents-and-extent-allocation-in-ext4
https://blogs.oracle.com/linux/post/extents-and-extent-allocation-in-ext4

Straw man: contiguous allocation

» “Extent-based”: allocate files like segmented memory
- When creating a file, make the user pre-specify its length and
allocate all space at once
- Inode contents: location and size

what happens if
file ¢ needs 2
sectors???

file a (base=1,len=3) file b (base=5,len=2)

* Example: IBM 0S/360

* Pros?
- Simple, fast access, both sequential and random

* Cons? (Think of corresponding VM scheme)
- External fragmentation

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Straw man #2: Linked files

» Basically a linked list on disk.
- Keep a linked list of all free blocks
- Inode contents: a pointer to file’s first block
- In each block, keep a pointer to the next one

how do you find
the last block in a?

file a (base=1) file b (base=5)

* Examples (sort-of): Alto, TOPS-10, DOS FAT
* Pros?
- Easy dynamic growth & sequential access, no fragmentation
¢ Cons?
- Linked lists on disk a bad idea because of access times
- Random very slow (e.g., traverse whole file to find last block)
- Pointers take up room in block, skewing alignment

https://www.scs.stanford.edu/24wi-csZ212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Linked Allocation Example

e Each file is a linked list of disk blocks: blocks may be scattered
anywhere on the disk

® Scheme

P N directory
\\\\-—-____————”// file start end

jeep 9 25

12 J13[114/ 115[]
16 J17[J18[119[]
20[J21[Je2[23[]
24[J25[J26[27[]

28[_129[130 131[]
\\\\5_____’////

Example: DOS FS (simplified)

* Linked files with key optimization: puts links in fixed-size “file
allocation table” (FAT) rather than in the blocks.

Directory (5) FAT (16-bit entries)

9.6 0| free file a
b: 2 1| eof 6 J 4 y 3
2 1
3| eof ;
4l 3 fileb
5| eof . 1
6 4

¢ Still do pointer chasing, but can cache entire FAT so can be
cheap compared to disk access

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

File-Allocation Table

directory entry

[test | e+ee [217
name start block .
e Beginning of volume has) E—
table, indexed by block
number
339 <
e Much like a linked list, but
faster on disk and a1 (NS
cacheable
® NeW block a”ocatlon number of disk blocks —1
FAT

simple

FAT discussion

Entry size = 16 bits
- What’s the maximum size of the FAT? 65,536 entries
- Given a 512 byte block, what’s the maximum size of FS? 32 MiB
- One solution: go to bigger blocks. Pros? Cons?

Space overhead of FAT is trivial:
- 2 bytes / 512 byte block = ~ 0.4% (Compare to Unix)

Reliability: how to protect against errors?

- Create duplicate copies of FAT on disk
- State duplication a very common theme in reliability

Bootstrapping: where is root directory?

- Fixed location on disk: FAT| (opt) FAT |root dir

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Approach #3: Indexed Allocation Method

» Each file has an array holding all of its block pointers
- Just like a page table, so will have similar issues
- Max file size fixed by array’s size (static or dynamic?)
- Allocate array to hold file’s block pointers on file creation
- Allocate actual blocks on demand using free list

=
* Pros? file a file b

- Both sequential and random access easy

* Cons?

- Mapping table requires large chunk of contiguous space
...Same problem we were trying to solve initially

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Example of Indexed Allocation

/’_\ directory

T file index block
o] 11 200 31 15D 19
4l 1 5[] 7[]

gl]9

16
20[_J21[J22[A23[]
24[l25[26 l27[]

28 J29[I30[J31[]
v

Indexed files

* Issues same as in page tables

Wu_l_l_u_u_l «——2"20 entries!

/—:Y

4K blocks

2732 file size

- Large possible file size = lots of unused entries
- Large actual size? table needs large contiguous disk chunk

» Solve identically: small regions with index array, this array
with another array, ... Downside?

https://www.scs.stanford.edu/24wi-cs212/notes/file systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Multi-level indexed files (old BSD FS,UNIX UFS)

» Solve problem of first block access slow
* inode = 14 block pointers + “stuff”

data blocks Tndirect M
stuff Ptp 1
__/-
P T B |ptr2 -
g R
g e
gl —
ptr 4 |
. Indirect blks
Ptr 1
pTr' 13 /ma—
14 -
ptr 128 Double indirect block

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

UNIX UFS

e 4K bytes per block,
32-bit addresses

e More index blocks than
can be addressed with
32-bit file pointer

file
metadata

single indirect
blocks

double indirect
blocks

triple indirect
blocks

Old BSD FS discussion

* Pros:

- Simple, easy to build, fast access to small files
- Maximum file length fixed, but large.

* Cons:

- What is the worst case # of accesses?
- What is the worst-case space overhead? (e.g., 13 block file)

* An empirical problem:

- Because you allocate blocks by taking them off unordered freelist,
metadata and data get strewn across disk

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

More about inodes

* Inodes are stored in a fixed-size array
- Size of array fixed when disk is initialized; can’t be changed
- Lives in known location, originally at one side of disk:

| Inode arr'ay\ file blocks ... ,

- Now is smeared across it (why?)

e

b Nl

- The index of an inode in the inode array called an i-number
- Internally, the OS refers to files by inumber
- When file is opened, inode brought in memory

- Written back when modified and file closed or time elapses
https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Directories

* Problem:

- “Spend all day generating data, come back the next morning, want
to useit.” - F. Corbatd, on why files/dirs invented

» Approach 0: Users remember where on disk their files are
- E.g., like remembering your social security or bank account #

* Yuck. People want human digestible names
- We use directories to map names to file blocks

* Next: What is in a directory and why?

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

A short history of directories

* Approach 1: Single directory for entire system

- Put directory at known location on disk
- Directory contains (name, inumber) pairs
- If one user uses a name, no one else can
- Many ancient personal computers work this way

» Approach 2: Single directory for each user
- Still clumsy, and 1s on 10,000 files is a real pain

» Approach 3: Hierarchical name spaces
- Allow directory to map names to files or other dirs
- File system forms a tree (or graph, if links allowed)

- Large name spaces tend to be hierarchical (ip addresses, domain
names, scoping in programming languages, etc.)

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Hierarchical Unix
S
 Used since CTSS (1960s) afs bin cdrom dev sbin tr

- Unix picked up and used really nicely awk chmod choy

* Directories stored on disk just like regular files
- Special inode type byte set to directory

, : , <name,inode#>
- Users can read just like any other file cafa 10215

(historically)

<tmp, 1020>
- Only special syscalls can write (why?) <bin, 1022>
- Inodes at fixed disk location <cdrom,4123>
<dev,1001>

- File pointed to by the index may be

: - .
another directory sbin, 1011

- Makes FS into hierarchical tree (what
needed to make a DAG?)

» Simple, plus speeding up file ops speeds up dir ops!

https://www.scs.stanford.edu/24wi-cs212/notes/file systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Naming magic

* Bootstrapping: Where do you start looking?
- Root directory always inode #2 (0 and 1 historically reserved)

» Special names:

- Root directory: “/” (fixed by kernel—e.g., inode 2)
- Current directory: “.” (actual directory entry on disk)
- Parent directory: “..” (actual directory entry on disk)

» Some special names are provided by shell, not FS:

- User’s home directory: “~”
- Globbing: “foo.*” expands to all files starting “foo.’

b

» Using the given names, only need two operations to navigate
the entire name space:

- cd name: move into (change context to) directory name
- 1s: enumerate all names in current directory (context)

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Unix example: /a/b/c.c

Name space Physical organization

disk

\Inode table

wn

<a,3>

What inode holds file for
<c.c, 14 a? b? c.c?

<b,b>

https://www.scs.stanford.edu/24wi-cs212/notes/file systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Default context: working directory

* Cumbersome to constantly specify full path names
- In Unix, each process has a “current working directory” (cwd)

- File names not beginning with “/” are assumed to be relative to
cwd; otherwise translation happens as before

- Editorial: root, cwd should be regular fds (like stdin, stdout, ...)
with openat syscall instead of open

» Shells track a default list of active contexts

- A “search path” for programs you run

- Given a search path A : B : C, a shell will check in A, then check in B,
then checkinC

- Can escape using explicit paths: “./foo”

» Example of locality

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Hard and soft links (synonyms)

* More than one dir entry can refer to a given file

- Unix stores count of pointers foo bar .
(“hard links”) to inode L T 4

- To make: “1n foo bar” createsa inode #31279
synonym (bar) for file foo refcount=2

» Soft/symbolic links = synonyms for names
- Point to a file (or dir) name, but object can be deleted from
underneath it (or never even exist). g

- Unix implements like directories: inode has special .

“symlink” bit set and contains name of link target .-
"/bar" 5
—| refcount=1

ln -s /bar baz
baz

- When the file system encounters a symbolic link it automatically
translates it (if possible).

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Case study: speeding up FS

* Original Unix FS: Simple and elegant:

I inodes data blocks (512 bytes)

superblock disk

* Components:

- Data blocks
- Inodes (directories represented as files)
- Hard links

- Superblock. (specifies number of blks in FS, counts of max # of
files, pointer to head of free list)

* Problem: slow

- Only gets 20Kb/sec (2% of disk maximum) even for sequential disk

transfers!
https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

For example, imagivné the following data block region, which contains
Exa m p I e four files (A, B, C, and D), each of size 2 blocks:

B1 | B2 | C1 | C2 | D1 | D2

If Band D are deleted, the resulting layout is:

C1 | C2

As you can see, the free space is fragmented into two chunks of two
blocks, instead of one nice contiguous chunk of four. Let’s say you now
wish to allocate a file E, of size four blocks:

side note: this problem is exactly what disk defragmentation tools help with..

% Smaller blocks were good because they minimized internal fragmentation (waste within the
block),

% but bad for transfer as each block might require a positioning overhead to reach it

How do we make the file system “disk aware”?

https://pages.cs.wisc.edu/~remzi/OSTEP/file-ffs.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-ffs.pdf

A plethora of performance costs

* Blocks too small (512 bytes)

- File index too large
- Too many layers of mapping indirection
- Transfer rate low (get one block at time)

* Poor clustering of related objects:

- Consecutive file blocks not close together
- Inodes far from data blocks
- Inodes for files in same directory not close together

» «

- Poor enumeration performance: e.g., “1s -1”, “grep foo *.c”

» Usability problems

- 14-character file names a pain
- Can’t atomically update file in crash-proof way

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Problem: Internal fragmentation

* Block size was too small in Unix FS
» Why not just make block size bigger?

Block size | space wasted | file bandwidth
512 6.9% 2.6%

1024 11.8% 3.3%

2048 22.4% 6.4%

4096 45.6% 12.0%

1MB 99.0% 97.2%

» Bigger block increases bandwidth, but how to deal with
wastage (“internal fragmentation”)?

- Use idea from malloc: split unused portion.

https://www.scs.stanford.edu/24wi-cs212/notes/file systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Solution: fragments

» BSD FFS:

- Has large block size (4096 or 8192)

- Allow large blocks to be chopped into small ones (“fragments”)
- Used for little files and pieces at the ends of files

file a

* Best way to eliminate internal fragmentation?

- Variable sized splits of course
- Why does FFS use fixed-sized fragments (1024, 2048)?

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

BSD FFS (Fast File System)

The idea is to design the file system structures and allocation policies to be “disk

aware”
Single track (e.g., dark gray)

Cylinder Group:

Set of N consecutive cylinders
3, first group does

not include black track]

bbb
I R O

fif N

of drive across different surfaces
[all tracks with same color]
|

Cylinder
Tracks at same distance from center

https://pages.cs.wisc.edu/~remzi/OSTEP/file-ffs.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-ffs.pdf

Clustering related objects in FFS

* Group sets of consecutive cylinders into “cylinder groups”

\{\ -1 /-f
Cylinder group 1— e
= e e
cylinder group 2\ e S
— T T
< -

- Key: can access any block in a cylinder without performing a seek
Next fastest place is adjacent cylinder.

- Tries to put everything related in same cylinder group
- Tries to put everything not related in different group

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

A per-group inode bitmap (ib) and data bitmap (db) serve this role for inodes and
data blocks in each group

Group 0 Group 1 Group 2

Data | ib db des Data | ib db| des ‘ Data

https://pages.cs.wisc.edu/~remzi/OSTEP/file-ffs.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-ffs.pdf

Clustering in FFS

* Tries to put sequential blocks in adjacent sectors
- (Access one block, probably access next)

file b

* Tries to keep inode in same cylinder group as file data:
- (If you look at inode, most likely will look at data too)

* Tries to keep all inodes in a dir in same cylinder group
- Access one name, frequently access many, e.g., “1s -1”

https://www.scs.stanford.edu/24wi-cs212/notes/file systems.pdf

file a

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

What does disk layout look like?

* Each cylinder group basically a mini-Unix file system:
cylinder

e superblocks

l
| ST RS B
SRestsRBE

- inodes data blocks

* How how to ensure there’s space for related stuff?
- Place different directories in different cylinder groups
- Keep a “free space reserve” so can allocate near existing things
- When file grows too big (1LMB) send its remainder to different
cylinder group.

https://www.scs.stanford.edu/24wi-cs212/notes/file systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Finding space for related objs

* Old Unix (& DOS): Linked list of free blocks
- Just take a block off of the head. Easy.

A LAY 1

head—

- Bad: free list gets jumbled over time. Finding adjacent blocks hard
and slow
* FFS: switch to bit-map of free blocks

- 1010101111111000001111111000101100

- Easier to find contiguous blocks.

- Small, so usually keep entire thing in memory

- Time to find free block increases if fewer free blocks

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Using a bitmap
* Usually keep entire bitmap in memory:
- 4G disk / 4K byte blocks. How big is map?

* Allocate block close to block x?

- Check for blocks near bmap [x/32]
- If disk almost empty, will likely find one near

- As disk becomes full, search becomes more expensive and less
effective

* Trade space for time (search time, file access time)

* Keep areserve (e.g, 10%) of disk always free, ideally scattered
across disk
- Don’t tell users (df can get to 110% full)
- Only root can allocate blocks once FS 100% full
- With 10% free, can almost always find one of them free

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

So what did we gain?

Performance improvements:
- Able to get 20-40% of disk bandwidth for large files
- 10-20x original Unix file system!
- Better small file performance (why?)

Is this the best we can do? No.

Block based rather than extent based

- Could have named contiguous blocks with single pointer and
length (Linux ext4fs, XFS)

Writes of metadata done synchronously

- Really hurts small file performance

- Make asynchronous with write-ordering (“soft updates”) or
logging/journaling... more next lecture

- Play with semantics (/tmp file systems)

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Other hacks

* Obvious:
- Bigfile cache
» Fact: no rotation delay if get whole track.
- How to use?
» Fact: transfer cost negligible.
- Recall: Can get 50x the data for only ~3% more overhead
- 1sector: 5ms+4ms+ 5us (=~ 512 B/(100 MB/s)) ~ 9ms
- 50 sectors: 5ms +4ms +.25ms =9.25ms
- How to use?

* Fact: if transfer huge, seek + rotation negligible
- LFS: Hoard data, write out MB at a time

https://www.scs.stanford.edu/24wi-cs212/notes/file _systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

How To Update The Disk Despite
Crashes?

Early file systems took a simple
approach to crash consistency

Crash recove ry e Basically, they decided to let

inconsistencies happen and
then fix them later (when
rebooting).

e A classic example of this lazy
approach is found in a tool that
does this: fsck

https://pages.cs.wisc.edu/~remzi/O
STEP/file-journaling.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

Fixing corruption — fsck

Must run FS check (fsck) program after crash

Summary info usually bad after crash
- Scan to check free block map, block/inode counts

System may have corrupt inodes (not simple crash)

- Bad block numbers, cross-allocation, etc.
- Do sanity check, clear inodes containing garbage

Fields in inodes may be wrong

- Count number of directory entries to verify link count, if no entries
but count # 0, move to lost+found

- Make sure size and used data counts match blocks

Directories may be bad

- Holesillegal, . and .. must be valid, file names must be unique
- All directories must be reachable

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

A basic summary of what fsck does:

Superblock: fsck first checks if the superblock looks reasonable

e mostly doing sanity checks such as making sure the file system size is greater
than the number of blocks that have been allocated.

Free blocks: Next, fsck scans the inodes, indirect blocks, double indirect blocks,
etc., to build an understanding of which blocks are currently allocated within the
file system

e It uses this knowledge to produce a correct version of the allocation bitmaps
e if there is any inconsistency between bitmaps and inodes, it is resolved by
trusting the information within the inodes.

https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

A basic summary of what fsck does:

Inode state
Inode links
Duplicates
Bad blocks
Directory checks

building a working fsck requires intricate knowledge of the file system; making
sure such a piece of code works correctly in all cases can be challenging

https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

Crash recovery permeates FS code

e Have to ensure fsck can recover file system

* Strawman: just write all data asynchronously
- Any subset of data structures may be updated before a crash

» Delete/truncate a file, append to other file, crash?

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Crash recovery permeates FS code

e Have to ensure fsck can recover file system

* Strawman: just write all data asynchronously
- Any subset of data structures may be updated before a crash

» Delete/truncate a file, append to other file, crash?

- New file may reuse block from old
- Old inode may not be updated

- Cross-allocation!
- Often inode with older mtime wrong, but can’t be sure

* Append to file, allocate indirect block, crash?

- Inode points to indirect block
- But indirect block may contain garbage!

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Sidenote: kernel-internal disk write routines

» BSD has three ways of writing a block to disk

1. bdwrite - delayed write

- Marks cached copy of block as dirty, does not write it
- Will get written back in background within 30 seconds
- Used if block likely to be modified again soon

2. bawrite - asynchronous write

- Start write but return immediately before it completes
- E.g., use when appending to file and block is full

3. bwrite - synchronous write
- Start write, sleep and do not return until safely on disk

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Ordering of updates

* Must be careful about order of updates

- Write new inode to disk before directory entry
- Remove directory name before deallocating inode
- Write cleared inode to disk before updating CG free map

* Solution: Many metadata updates synchronous (bwrite)

- Doing one write at a time ensures ordering
- Of course, this hurts performance
- E.g., untar much slower than disk bandwidth

* Note: Cannot update buffers on the disk queue

- E.g., say you make two updates to same directory block

- But crash recovery requires first to be synchronous

- Must wait for first write to complete before doing second

- Makes bawrite as slow as bwrite for many updates to same block

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Performance vs. consistency

» FFS crash recoverability comes at huge cost
- Makes tasks such as untar easily 10-20 times slower
- All because you might lose power or reboot at any time

* Even slowing normal case does not make recovery fast
- If fsck takes one minute, then disks get 10x bigger, then 100x ...

* One solution: battery-backed RAM

- Expensive (requires specialized hardware)
- Often don’t learn battery has died until too late
- A pain if computer dies (can’t just move disk)
- If OS bug causes crash, RAM might be garbage
» Better solution: Advanced file system techniques

- Next: two advanced techniques

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Soft updates
Journaling

log structured file
system (LFS)
copy on write file
systems

Soft updates an approach to
maintaining file system metadata
integrity in the event of a crash or
power outage.

Journaling uses transactions to
achieve consistency

e Neither journaling nor soft
updates guarantees that no
data will be lost,

e Dbut they do make sure that the
file system remains consistent.

First attempt: Ordered updates

Want to avoid crashing after “bad” subset of writes

Must follow 3 rules in ordering updates [Ganger]:

1. Never write pointer before initializing the structure it points to
2. Never reuse a resource before nullifying all pointers to it
3. Never clear last pointer to live resource before setting new one

If you do this, file system will be recoverable

Moreover, can recover quickly

- Might leak free disk space, but otherwise correct
- So start running after reboot, scavenge for space in background

How to achieve?

- Keep a partial order on buffered blocks

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Example ordered updates

* Example: Create file A

- Block X contains an inode

- Block Y contains a directory block

- Createfile Ain inode block X, dir block Y
- By rule #1, must write X before writing Y

* Wesay Y — X, pronounced “Y depends on X”
- Means Y cannot be written before X is written
- Xis called the dependee, Y the depender

» Can delay both writes, so long as order preserved

- Say you create a second file Bin blocks X and Y
- Only have to write each out once for both creates

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Problem: Cyclic dependencies

* Suppose you create file A, unlink file B, but delay writes
- Both files in same directory block Y & inode block X

* Rule #1: Must write A’s inode before dir. entry (Y — X)

- Otherwise, after crash directory will point to bogus inode
- Worse yet, same inode # might be re-allocated
- So could end up with file name A being an unrelated file

* Rule #2: Must clear B’s dir. entry before writing inode (X — Y)

- Otherwise, B could end up with too small a link count
- File could be deleted while links to it still exist

* Otherwise, fsck has to be slow
- Check every directory entry and every inode link count

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Cycle dependency

Y
inode block directory block

inode #4 (-,#0) in use E original
inode #5 (B free E modified
inode #6 (C,HT) '
inode #7

Original organization

inode block directory block inode block directory block

inode #4 (A, #4) inode #4 (A,#4)
inode #5 (B,#5) inode #5 ¥ (—,#5)
inode #6 (C,H#T) inode #6 (C,H#T)
inode #7 inode #7

Create file A Remove file B

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

More problems

* Crash might occur between ordered but related writes
- E.g., summary information wrong after block freed

* Block aging
- Block that always has dependency will never get written back

» Solution: Soft updates [Ganger]

- Write blocks in any order
- But keep track of dependencies

- When writing a block, temporarily roll back any changes you can’t
yet commit to disk

- l.e., can’t write block with any arrows pointing to dependees
...but can temporarily undo whatever change requires the arrow

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Breaking dependencies with rollback

Buffer cache Disk
inode block directory block inode block directory block
inode #4 (A, #4) inode #4 (-,#0)
inode #5 N (-,#0) inode #5 (B,#5)
inode #6 (C,H#T) inode #6 (C,H#T)
inode #7 inode #7

» Created file A and deleted file B
* Now say we decide to write directory block...
» Can’t write file name A to disk—has dependee

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Breaking dependencies with rollback

Buffer cache
inode block directory block
inode #4 ¢ (A,#4)
inode #5 (-, #0)
inode #6 (C,HT)
inode #7

* Undo file A before writing dir block to disk

Disk
inode block directory block
inode #4 (-,#0)
inode #5 (=,#0)
inode #6 (C,HT)
inode #7

- Even though we just wrote it, directory block still dirty

» But now inode block has no dependees

- Can safely write inode block to disk as-is...

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Breaking dependencies with rollback

inode block

directory block

inode #4

('3#0)

inode #5

("’#°>

inode #6

(C,#7)

Buffer cache
inode block directory block
inode #4 (A,#4)
inode #5 (-,#0)
inode #6 (C,H#T)
inode #7

inode #7

* Now inode block clean (same in memory as on disk)

* But have to write directory block a second time...

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Breaking dependencies with rollback

Buffer cache Disk
inode block directory block inode block directory block
inode #4 (A#4) inode #4 (A,#4)
inode #5 (-,#0) inode #5 (-,#0)
inode #6 (C,H#T) inode #6 (C,HT)
inode #7 inode #7

» All data stably on disk
* Crash at any point would have been safe

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Soft updates

» Structure for each updated field or pointer, contains:

- old value
- new value
- list of updates on which this update depends (dependees)

» Can write blocks in any order

- But must temporarily undo updates with pending dependencies
- Must lock rolled-back version so applications don’t see it
- Choose ordering based on disk arm scheduling

* Some dependencies better handled by postponing in-memory
updates

- E.g., when freeing block (e.g., because file truncated), just mark
block free in bitmap after block pointer cleared on disk

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

An alternative: Journaling

* Biggest crash-recovery challenge is inconsistency
- Have one logical operation (e.g., create or delete file)

- Requires multiple separate disk writes
- If only some of them happen, end up with big problems

* Most of these problematic writes are to metadata

* ldea: Use a write-ahead log to journal metadata

- Reserve a portion of disk for a log
- Write any metadata operation first to log, then to disk

- After crash/reboot, re-play the log (efficient)
- May re-do already committed change, but won’t miss anything

Many uses this idea:
Linux ext3 and ext4, reiserfs, IBM’s JFS, SGI's XFS, and Windows NTFS

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

* Group multiple operations into one log entry

- E.g., clear directory entry, clear inode, update free map—
either all three will happen after recovery, or none
* Performance advantage:
- Log is consecutive portion of disk
- Multiple operations can be logged at disk b/w
- Safe to consider updates committed when written to log

* Example: delete directory tree

- Record all freed blocks, changed directory entries in log
- Return control to user

- Write out changed directories, bitmaps, etc. in background
(sort for good disk arm scheduling)

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Journaling details

* Must find oldest relevant log entry

- Otherwise, redundant and slow to replay whole log
- Worse, old directory/indirect blocks reallocated as data could get
corrupted by old replay (because only metadata logged)
» Use checkpoints

- Once all records up to log entry N have been processed and
affected blocks stably committed to disk...

- Record N to disk either in reserved checkpoint location, or in
checkpoint log record

- Never need to go back before most recent checkpointed N
* Must also find end of log

- Typically circular buffer; don’t play old records out of order
- Caninclude begin transaction/end transaction records
- Also typically have checksum in case some sectors bad

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Case study: XFS

* Main idea: Think big
- Big disks, files, large # of files, 64-bit everything
- Yet maintain very good performance

* Break disk up into Allocation Groups (AGs)
- 0.5-4GiB regions of disk
- New directories go in new AGs
- Within directory, inodes of files go in same AG

- Unlike cylinder groups, AGs too large to minimize seek times
- Unlike cylinder groups, no fixed # of inodes per AG

* Advantages of AGs:

- Parallelize allocation of blocks/inodes on multiprocessor
(independent locking of different free space structures)

- Can use 32-bit block pointers within AGs
(keeps data structures smaller)

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

B+trees

bk
r

P
t

r

K
\

K
V

V

K/

P
t

e-l'o
N
P
P

FIO

He 1 VIVIV][He —

» XFS makes extensive use of B+-trees

- Indexed data structure stores ordered Keys & Values

- Keys must have an ordering defined on them
- Stored data in blocks for efficient disk access

* For B+-tree with n items, all operations O(log n):
- Retrieve closest (key, value) to target key k
- Insert a new (key, value) pair
- Delete (key, value) pair

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Other approaches: Copy-on-write (yes, COW)

used e.g. ZFS
it places new updates to previously unused locations on disk.

After a number of updates are completed, COW file systems flip the root structure of
the file system to include pointers to the newly updated structures.

https://pages.cs.wisc.edu/~remzi/O
STEP/file-journaling.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

Other approaches: Log Structured File System (LFS)

® Log-structured file system is a file system in which data and metadata

are written sequentially to a circular buffer, called a log.

® Alog-structured file system thus treats its storage as a circular log and
writes sequentially to the head of the log.

D
A0
| S T |
buffer wrltes, B ?; Eﬁ? b[0]:A5
then commit all at Dio| Dji1| Dj2| Djs|b2fa2| Dko
once b[3]:A3
A0 A1 A2 A3 Inode j A5 Inode k

https://pages.cs.wisc.edu/~remzi/OSTEP/file-Ifs.pdf

https://en.wikipedia.org/wiki/Log-structured_file_system
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Circular_buffer
https://en.wikipedia.org/wiki/Log_file
https://en.wikipedia.org/wiki/Circular_buffer
https://pages.cs.wisc.edu/~remzi/OSTEP/file-lfs.pdf

Flash-Friendly
File System
(F2FS)

see
https://www.kernel.org/doc/Docu
mentation/filesystems/f2fs.txt

https://www.kernel.org/doc/Documentation/filesystems/f2fs.txt
https://www.kernel.org/doc/Documentation/filesystems/f2fs.txt

Flash-Friendly File System (F2FS)

* File system targeted at flash devices with FTL (e.g., SSDs)
- Try to do mostly large sequential writes
- Don’t attempt to do wear leveling (since have FTL anyway)
- See also [Brown]

» Break disk up into:
- Blocks - 4 KiB
- Segments - 512 blocks, chosen so one block fits segment summary
- Sections - 2' segments (default i = 0), unit of log cleaning
- Zones - n sections (default n = 1), if device internally comprises
“subdevices,” send parallel 10 to different zones
» Split device in two parts:
- Main area, in which to perform large sequential writes
- Smaller metadata area has random writes, relies on FTL

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

F2FS layout

‘ Random Writes '< Multi-stream Sequential Writes }
| Zone | Zone | Zone | Zone |
| sSection | Section | Section | Section | Section | Section | Section | Section |
Segment Number S N o I O S T o e e e
:uperg:oc: :(1) :I Check |Segment Info. | Node Address | Segment Summary Main Area
Hpernioc point Table Table Area I [1| | | | | [|
(CP) (SIT) (NAT) (SSA) T T T
Sector #0 v v v v v v
Hot/Warm/Cold Hot/Warm/Cold
Node segments Data segments

CP - Valid SIT/NAT sets, list of orphan (open+deleted) inodes
- Place version # in header+footer, use consistent CP with highest #
SIT - Per-segment block validity bitmap and count

- Two SIT areas and a small journal avoids updating in place
- CP says which SIT area is active

NAT - Translates node numbers to actual block storing node
- Updated like SIT

SSA - Parent info for each block (e.g., inode+offset)
- Just updated in place, CP records active ones to recover

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

F2 FS InOde Inode block

Metadata

direct pointers
or
inline data

inline xattrs

Single-indirect

Double-indirect

[] Data
[] Direct node

[] Indirect node

Triple-indirect

| Su—

|

==

| —

* Small files (<3,692 bytes) stored “inline” inside inode
» Node pointers use NAT table for level of indirection

- Lets P2k move a.ngde without ypdating pa

rent pointers

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Multi-head logging

Type | Temp. | Objects
Hot Direct node blocks for directories
Node | Warm | Direct node blocks for regular files
Cold | Indirect node blocks
Hot Directory entry blocks
Warm | Data blocks made by users
Data Data blocks moved by cleaning;
Cold | Cold data blocks specified by users;

Multimedia file data

» Two kinds of cleaning foreground and background

- Foreground (only if needed) greedily cleans most free section
- Background just loads blocks into buffer cache and marks dirty
* With no disk head, can efficiently maintain multiple logs

- Group data by similar expected lifetime (see above)
- Means can clean empty or mostly empty sections

https://www.scs.stanford.edu/24wi-cs212/notes/advanced fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Network file
systems, WAFL,
other issues

File System

General-purpose computers can have multiple storage devices

Devices can be sliced into partitions, which hold volumes

Volumes can span multiple partitions

Each volume usually formatted into a file system

of file systems varies, typically dozens available to choose from

Typical storage device organization:

volume 1 partition A —

volume 2— partition B~

directo

directory

+ storage device 1

volume 3

partition C

partition D—

director

+ storage device 2

+ storage device 3

Solaris File Systems

Jié ufs
/devices devfs
/dev dev
/system/contract ctfs
/proc proc
/etc/mnttab mntfs
/etc/svc/volatile tmpfs
/system/object objfs
/lib/libc.so.1 lofs
/dev/fd fd
/var ufs
/tmp tmpfs
/var/run tmpfs
/opt ufs
/zpbge zfs
/zpbge /backup zfs
/export/home zfs
/var/mail zfs
/var/spool/mqueue zfs
/zpbg zfs

/zpbg/zones zfs

Partitions and Mounting

Partition can be a volume containing a file system (“cooked”) or raw — just a
sequence of blocks with no file system

Boot block can point to boot volume or boot loader set of blocks that contain enough
code to know how to load the kernel from the file system

o Or a boot management program for multi-os booting

Root partition contains the OS, other partitions can hold other OSes, other file
systems, or be raw

o Mounted at boot time

o Other partitions can mount automatically or manually on mount points —
location at which they can be accessed

At mount time, file system consistency checked
o Is all metadata correct?
n If not, fix it, try again
= [f yes, add to mount table, allow access

File Systems and Mounting

(a) Unix-like file
system directory
tree

(a) Unmounted file
system

After mounting (b)
into the existing
directory tree

File Sharing

e Allows multiple users / systems access to the same files
e Permissions / protection must be implemented and accurate
o Most systems provide concepts of owner, group member

o Must have a way to apply these between systems

Virtual File Systems

Virtual File Systems (VFS) on Unix provide an object-oriented way of
implementing file systems

VFS allows the same system call interface (the API) to be used for
different types of file systems

o Separates file-system generic operations from implementation details

o Implementation can be one of many file systems types, or network file
system

= Implements vnodes which hold inodes or network file details

o Then dispatches operation to appropriate file system implementation
routines

Virtual File Systems (Cont.)

e The APl is to the VFS interface, rather than any specific type of file system

e Example

file-system interface

VFS interface

local file system local file system remote file system
type 1 type 2 type 1

2
\

network

Virtual File System Implementation

e For example, Linux has four object types:
o inode, file, superblock, dentry
e VFS defines set of operations on the objects that must be implemented

o Every object has a pointer to a function table
s Function table has addresses of routines to implement that function on that object

s For example:

m °int open(. . .)—Open afile

s °int close(. . .)—Close an already-open file
m °ssize t read(. . .)—Read from afile

m °ssize t write(. . .)—Write to afile

= °int mmap(. . .)—Memory-map a file

Remote File Systems

Sharing of files across a network
First method involved manually sharing each file — programs like ftp
Second method uses a distributed file system (DFS)
o Remote directories visible from local machine
Third method — World Wide Web
o A Dbit of a revision to first method
o Use browser to locate file/files and download /upload

© Anonymous access doesn’t require authentication

Client-Server Model

Sharing between a server (providing access to a file system via a
network protocol) and a client (using the protocol to access the remote
file system)

Ildentifying each other via network ID can be spoofed, encryption can
be performance expensive

NFS an example

o User auth info on clients and servers must match (UserlDs for
example)

o Remote file system mounted, file operations sent on behalf of user
across network to server

o Server checks permissions, file handle returned
o Handle used for reads and writes until file closed

Distributed Information Systems

Aka distributed naming services, provide unified access to info needed for
remote computing

Domain name system (DNS) provides host-name-to-network-address
translations for the Internet

Others like network information service (NIS) provide user-name,
password, userlD, group information

Microsoft's common Internet file system (CIFS) network info used with user
auth to create network logins that server uses to allow to deny access

o Active directory distributed naming service
o Kerberos-derived network authentication protocol

Industry moving toward lightweight directory-access protocol (LDAP) as
secure distributed naming mechanism

Consistency Semantics

Important criteria for evaluating file sharing-file systems
Specify how multiple users are to access shared file simultaneously
o When modifications of data will be observed by other users

o Directly related to process synchronization algorithms, but atomicity across a network has high
overhead (see Andrew File System)

The series of accesses between file open and closed called file session
UNIX semantics
o Writes to open file immediately visible to others with file open
o One mode of sharing allows users to share pointer to current I/O location in file
o Single physical image, accessed exclusively, contention causes process delays
Session semantics (Andrew file system (OpenAFS))
o Writes to open file not visible during session, only at close

o Can be several copies, each changed independently

The Sun Network File System (NFS)

An implementation and a specification of a software system for
accessing remote files across LANs (or WANS)

The implementation originally part of SunOS operating system,
now industry standard / very common

Can use unreliable datagram protocol (UDP/IP) or TCP/IP, over
Ethernet or other networks

NFS (Cont.)

Interconnected workstations viewed as a set of independent machines
with independent file systems, which allows sharing among these file
systems in a transparent manner

o Aremote directory is mounted over a local file system directory

= The mounted directory looks like an integral subtree of the local
file system, replacing the subtree descending from the local
directory

o Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to be
provided

= Files in the remote directory can then be accessed in a
transparent manner

O Subject to access-rights accreditation, potentially any file system (or
directory within a file system), can be mounted remotely on top of any
local directory

NFS (Cont.)

NFS is designed to operate in a heterogeneous environment of
different machines, operating systems, and network architectures;
the NFS specifications independent of these media

This independence is achieved through the use of RPC primitives
built on top of an External Data Representation (XDR) protocol used
between two implementation-independent interfaces

The NFS specification distinguishes between the services provided
by a mount mechanism and the actual remote-file-access services

NFS Mounting Example

e Three independent file systems
S1: S2:

local Shared

dirt

NFS Mounting Example (Cont.)

e Mounts and cascading mounts

U: u:

usr usr

local local

dirt dirt
AR
A
A

(a) (b)
Mount

Cascading mounts

NFS Mount Protocol

Establishes initial logical connection between server and client

Mount operation includes name of remote directory to be mounted and name of
server machine storing it

o Mount request is mapped to corresponding RPC and forwarded to mount
server running on server machine

o Export list — specifies local file systems that server exports for mounting,
along with names of machines that are permitted to mount them

Following a mount request that conforms to its export list, the server returns a
file handle—a key for further accesses

File handle — a file-system identifier, and an inode number to identify the
mounted directory within the exported file system

The mount operation changes only the user’s view and does not affect the
server side

NFS Protocol

Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:

©)

O

O

O

O

searching for a file within a directory
reading a set of directory entries
manipulating links and directories
accessing file attributes

reading and writing files

NFS servers are stateless; each request has to provide a full set of
arguments (NFS V4 is newer, less used — very different, stateful)

Modified data must be committed to the server’s disk before results
are returned to the client (lose advantages of caching)

The NFS protocol does not provide concurrency-control mechanisms

Three Major Layers of NFS Architecture

UNIX file-system interface (based on the open, read, write, and
close calls, and file descriptors)

Virtual File System (VFS) layer — distinguishes local files from remote
ones, and local files are further distinguished according to their
file-system types

o The VFS activates file-system-specific operations to handle local
requests according to their file-system types

o Calls the NFS protocol procedures for remote requests
NFS service layer — bottom layer of the architecture

o Implements the NFS protocol

Schematic View of NFS Architecture

client server

system-calls interface

|

VFS interface VES interface
} } ,
other types of UNIX file NFS NFS UNIX file
file systems system client server system
RPC/XDR RPC/XDR

network

NFS Path-Name Translation

e Performed by breaking the path into component names and
performing a separate NFS lookup call for every pair of component
name and directory vnode

e To make lookup faster, a directory name lookup cache on the client’s
side holds the vnodes for remote directory names

NFS Remote Operations

Nearly one-to-one correspondence between regular UNIX system
calls and the NFS protocol RPCs (except opening and closing files)

NFS adheres to the remote-service paradigm, but employs buffering
and caching techniques for the sake of performance

File-blocks cache — when a file is opened, the kernel checks with the
remote server whether to fetch or revalidate the cached attributes

o Cached file blocks are used only if the corresponding cached
attributes are up to date

File-attribute cache — the attribute cache is updated whenever new
attributes arrive from the server

Clients do not free delayed-write blocks until the server confirms that
the data have been written to disk

Efficiency and Performance

e Efficiency dependent on:

O

O

O

Disk allocation and directory algorithms
Types of data kept in file’s directory entry
Pre-allocation or as-needed allocation of metadata structures

Fixed-size or varying-size data structures

Efficiency and Performance (Cont.)

e Performance

©)

O

O

Keeping data and metadata close together
Buffer cache — separate section of main memory for frequently used blocks
Synchronous writes sometimes requested by apps or needed by OS
= No buffering / caching — writes must hit disk before acknowledgement
= Asynchronous writes more common, buffer-able, faster
Free-behind and read-ahead — techniques to optimize sequential access

Reads frequently slower than writes

Page Cache

A page cache caches pages rather than disk blocks using
virtual memory techniques and addresses

Memory-mapped I/O uses a page cache
Routine I/O through the file system uses the buffer (disk) cache

This leads to the following figure

/0O Without a Unified Buffer Cache

I/O using

TSR) read() and write()

page cache

N\

buffer cache

file system

Unified Buffer Cache

e A unified buffer cache uses the same page cache to cache

both memory-mapped pages and ordinary file system 1/O to
avoid double caching

= But which caches get priority, and what replacement
algorithms to use?

/O Using a Unified Buffer Cache

/O using

memory-mapped I/O read() and write()

N/

buffer cache

A

Y

file system

Example: WAFL File System

Used on Network Appliance “Filers” — distributed file system appliances
“Write-anywhere file layout”
Serves up NFS, CIFS, http, ftp
Random |/O optimized, write optimized
o NVRAM for write caching

Similar to Berkeley Fast File System, with extensive modifications

The WAFL File Layout

root inode

inode file

free block map free inode map file in the file system... | eee

Snapsh

ots in WAFL

root inode

block A

a) Before a snapshot.

root inode new snapshot
/
blockA||B||C||D||E
(b) After a snapshot, before any blocks change.
root inode new snapshot
/
block A ||B||C||D]||E D’

(c) After block

D has changed to D".

The Apple File System

In 2017, Apple, Inc., released a new file system to replace its 30-year-old HFS+
file system. HFS+ had been stretched to add many new features, but as usual,
this process added complexity, along with lines of code, and made adding
more features more difficult. Starting from scratch on a blank page allows a
design to start with current technologies and methodologies and provide the
exact set of features needed.

Apple File System (APFS) is a good example of such a design. Its goal
is to run on all current Apple devices, from the Apple Watch through the
iPhone to the Mac computers. Creating a file system that works in watchOS,
I/0s, tvOS, and macOS is certainly a challenge. APFS is feature-rich, including
64-bit pointers, clones for files and directories, snapshots, space sharing, fast
directory sizing, atomic safe-save primitives, copy-on-write design, encryp-
tion (single- and multi-key), and I/O coalescing. It understands NVM as well
as HDD storage.

Most of these features we’ve discussed, but there are a few new concepts
worth exploring. Space sharing is a ZFS-like feature in which storage is avail-
able as one or more large free spaces (containers) from which file systems
can draw allocations (allowing APFS-formatted volumes to grow and shrink).
Fast directory sizing provides quick used-space calculation and updating.
Atomic safe-save is a primitive (available via API, not via file-system com-
mands) that performs renames of files, bundles of files, and directories as
single atomic operations. I/O coalescing is an optimization for NVM devices
in which several small writes are gathered together into a large write to
optimize write performance.

Apple chose not to implement RAID as part of the new APFS, instead
depending on the existing Apple RAID volume mechanism for software RAID.
APFS is also compatible with HFS+, allowing easy conversion for existing
deployments.

