
Chapter
13-14-15:

File-System
Interface &

implementation

● File Concept

● Access Methods

● Disk and Directory Structure

● Protection

● FS implementation

● Allocation

● Crash Recovery

● Other issues and systems

○ NFS,

○ WAFL

○ etc.skipped slides are not
included in the exam(atlanan
slidelar sinava dahil degil)

File Concept
● Contiguous logical address space

● Types:

○ Data
■ Numeric
■ Character
■ Binary

○ Program

● Contents defined by file’s creator

○ Many types
■ text file,
■ source file,
■ executable file

File Attributes
● Name – only information kept in human-readable form

● Identifier – unique tag (number) identifies file within file
system

● Type – needed for systems that support different types

● Location – pointer to file location on device

● Size – current file size

● Protection – controls who can do reading, writing,
executing

● Time, date, and user identification – data for
protection, security, and usage monitoring

● Information about files are kept in the directory structure,
which is maintained on the disk

● Many variations, including extended file attributes such
as file checksum

● Information kept in the directory structure File info Window on Mac OS X

Directory Structure

● A collection of nodes containing information about all files

● Both the directory structure and the files reside on disk

File Operations

● Create
● Write – at write pointer location

● Read – at read pointer location

● Reposition within file - seek
● Delete
● Truncate
● Open (Fi) – search the directory structure on disk for entry Fi, and

move the content of entry to memory

● Close (Fi) – move the content of entry Fi in memory to directory
structure on disk

Open Files

● Several pieces of data are needed to manage open files:

○ Open-file table: tracks open files

○ File pointer: pointer to last read/write location, per process that
has the file open

○ File-open count: counter of number of times a file is open – to
allow removal of data from open-file table when last processes
closes it

○ Disk location of the file: cache of data access information

○ Access rights: per-process access mode information

File Locking

● Provided by some operating systems and file systems

○ Similar to reader-writer locks

○ Shared lock similar to reader lock – several processes can
acquire concurrently

○ Exclusive lock similar to writer lock

● Mediates access to a file

● Mandatory or advisory:

○ Mandatory – access is denied depending on locks held and
requested

○ Advisory – processes can find status of locks and decide what to
do

Access Methods

● A file is fixed length logical records
● Sequential Access
● Direct Access
● Other Access Methods

Sequential Access

● Operations
○ read next

○ write next

○ Reset

○ no read after last write (rewrite)

Direct Access

● Operations
○ read n

○ write n

○ position to n
■ read next
■ write next
■ rewrite n

 n = relative block number

● Relative block numbers allow OS to decide where
file should be placed

Simulation of Sequential Access on Direct-access File

Disk Structure

● Disk can be subdivided into
partitions

● Disks or partitions can be RAID
protected against failure

● Disk or partition can be used raw
– without a file system, or
formatted with a file system

● Partitions also known as
minidisks, slices

● Entity containing file system is
known as a volume

● Each volume containing a file
system also tracks that file
system’s info in device directory
or volume table of contents

● In addition to general-purpose
file systems there are many
special-purpose file systems,
frequently all within the same
operating system or computer

A Typical File-system Organization

Types of File Systems

● We mostly talk of general-purpose file systems
● But systems frequently have may file systems, some general- and

some special- purpose
● Consider Solaris has

○ tmpfs – memory-based volatile FS for fast, temporary I/O

○ objfs – interface into kernel memory to get kernel symbols for debugging

○ ctfs – contract file system for managing daemons

○ lofs – loopback file system allows one FS to be accessed in place of another

○ procfs – kernel interface to process structures

○ ufs, zfs – general purpose file systems

Directory Structure

● A collection of nodes containing information about all files

● Both the directory structure and the files reside on disk

Operations Performed on Directory

● Search for a file

● Create a file

● Delete a file

● List a directory

● Rename a file

● Traverse the file system

Directory Organization

● Efficiency – locating a file quickly

● Naming – convenient to users

○ Two users can have same name for different files

○ The same file can have several different names

● Grouping – logical grouping of files by properties, (e.g., all
Java programs, all games, …)

The directory is organized logically to obtain

Single-Level Directory

● A single directory for all users

● Naming problem
● Grouping problem

Two-Level Directory

● Separate directory for each user

▪ Path name

▪ Can have the same file name for different user

▪ Efficient searching

▪ No grouping capability

Tree-Structured Directories

Acyclic-Graph Directories

● Have shared subdirectories and files
● Example

Acyclic-Graph Directories (Cont.)

● Two different names (aliasing)

● If dict deletes w/list ⇒ dangling pointer
Solutions:

○ Backpointers, so we can delete all pointers.
■ Variable size records a problem

○ Backpointers using a daisy chain organization

○ Entry-hold-count solution

● New directory entry type

○ Link – another name (pointer) to an existing file

○ Resolve the link – follow pointer to locate the file

General Graph Directory

General Graph Directory (Cont.)

● How do we guarantee no cycles?

○ Allow only links to files not subdirectories

○ Garbage collection

○ Every time a new link is added use a cycle detection algorithm to
determine whether it is OK

Current Directory
● Can designate one of the directories as the current (working) directory

○ cd /spell/mail/prog

○ type list
● Creating and deleting a file is done in current directory
● Example of creating a new file

○ If in current directory is /mail
○ The command

 mkdir <dir-name>
○ Results in:

○ Deleting “mail” ⇒ deleting the entire subtree rooted by “mail”

Protection

● File owner/creator should be able to control:

○ What can be done

○ By whom

● Types of access

○ Read
○ Write
○ Execute
○ Append
○ Delete
○ List

Access Lists and Groups in Unix
● Mode of access: read, write, execute
● Three classes of users on Unix / Linux

RWX
a) owner access 7 ⇒ 1 1 1

RWX
b) group access 6 ⇒ 1 1 0

RWX
c) public access 1 ⇒ 0 0 1

○ Ask manager to create a group
(unique name), say G, and add
some users to the group.

○ For a file (say game) or
subdirectory, define an appropriate
access.

○ Attach a group to a file

 chgrp G game

A Sample UNIX Directory Listing

Windows 7 Access-Control List Management

Chapter 14: File
System

Implementation

● File-System Structure

● File-System Operations

● Directory Implementation

● Allocation Methods

● Free-Space Management

● Efficiency and Performance

● Recovery

● Example: WAFL File System

File-System Structure
● File structure

○ Logical storage unit

○ Collection of related information

● File system resides on secondary storage (disks)

○ Provided user interface to storage, mapping
logical to physical

○ Provides efficient and convenient access to disk
by allowing data to be stored, located retrieved
easily

● Disk provides in-place rewrite and random access

○ I/O transfers performed in blocks of sectors
(usually 512 bytes)

● File control block (FCB) – storage structure
consisting of information about a file

● Device driver controls the physical device

● File system organized into layers

Layered File
System

File System Layers

● Device drivers manage I/O devices at the I/O control layer

 Given commands like

 read drive1, cylinder 72, track 2, sector 10, into memory
location 1060
 Outputs low-level hardware specific commands to hardware controller

● Basic file system given command like “retrieve block 123” translates to
device driver

● Also manages memory buffers and caches (allocation, freeing, replacement)

○ Buffers hold data in transit

○ Caches hold frequently used data

● File organization module understands files, logical address, and physical
blocks

▪ Translates logical block # to physical block #

▪ Manages free space, disk allocation

Layered File
System

File System Layers (Cont.)

● Logical file system manages metadata information

○ Translates file name into file number, file handle, location by
maintaining file control blocks (inodes in UNIX)

○ Directory management

○ Protection

● Layering useful for reducing complexity and redundancy, but
adds overhead and can decrease performance

● Logical layers can be implemented by any coding method
according to OS designer

● Many file systems, sometimes many within an operating system

○ Each with its own format:

○ CD-ROM is ISO 9660;

○ Unix has UFS, FFS;

○ Windows has FAT, FAT32, NTFS as well as floppy, CD, DVD Blu-ray,

○ Linux has more than 130 types, with extended file system ext3 and
ext4 leading; plus distributed file systems, etc.)

○ New ones still arriving – ZFS, GoogleFS, Oracle ASM, FUSE

File System Layers (Cont.)

File-System Operations

● We have system calls at the API level, but how do we implement their
functions?
○ On-disk and in-memory structures

● Boot control block contains info needed by system to boot OS from
that volume
○ Needed if volume contains OS, usually first block of volume

● Volume control block (superblock, master file table) contains volume
details
○ Total # of blocks, # of free blocks, block size, free block pointers or

array
● Directory structure organizes the files

○ Names and inode numbers, master file table

File Control Block (FCB)

● OS maintains FCB per file, which contains many details about
the file

○ Typically, inode number, permissions, size, dates

○ Example

In-Memory File System Structures

● Mount table storing file system mounts, mount points, file
system types

● System-wide open-file table contains a copy of the FCB of
each file and other info

● Per-process open-file table contains pointers to appropriate
entries in system-wide open-file table as well as other info

 In-Memory File System Structures (Cont.)

• Figure 12-3(a) refers to opening a file
• Figure 12-3(b) refers to reading a file

Directory Implementation

● Linear list of file names with pointer to the data blocks

○ Simple to program

○ Time-consuming to execute

■ Linear search time

■ Could keep ordered alphabetically via

● linked list

● or use B+ tree

● Hash Table – linear list with hash data structure

○ Decreases directory search time

○ Collisions – situations where two file names hash to the same location

○ Only good if entries are fixed size, or use chained-overflow method

Main tasks of file system

➔ Associate bytes with name (files)
➔ Associate names with each other (directories)
➔ Don’t go away (ever)
➔ Can implement file systems on disk, over network, in memory, in non-volatile

ram (NVRAM), on tape, w/ paper.
➔ We’ll focus on disk and generalize later

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Why disks are different

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Disk vs Memory

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Disk review

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Some useful trends

Disk bandwidth and cost/bit improving
exponentially

- Similar to CPU speed, memory size, etc.

Seek time and rotational delay improving very
slowly

- Why? require moving physical object (disk arm)

 Disk accesses a huge system bottleneck &
getting worse

- Bandwidth increase lets system (pre-)fetch large
chunks for about

the same cost as small chunk.

- Trade bandwidth for latency if you can get lots of
related stuff.

Desktop memory size increasing faster than
typical workloads

- More and more of workload fits in file cache

- Disk traffic changes: mostly writes and new
data

Memory and CPU resources increasing

- Use memory and CPU to make better
decisions

- Complex prefetching to support more IO
patterns

- Delay data placement decisions to reduce
random IO

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Files: named bytes on disk

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

What’s hard about grouping blocks?

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

FS vs. VM

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Some working intuitions

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Common addressing patterns

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Problem: how to track file’s data

Disk management:

- Need to keep track of where file contents are
on disk

- Must be able to use this to map byte offset to
disk block

- Structure tracking a file’s sectors is called an
index node or inode

- Inodes must be stored on disk, too

• Things to keep in mind while designing file
structure:

- Most files are small

- Much of the disk is allocated to large files

- Many of the I/O operations are made to large
files

- Want good sequential and good random
access

(what do these require?)

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Allocation
Methods

● An allocation method refers to
how disk blocks are allocated for
files:

○ Contiguous
○ Linked
○ File Allocation Table (FAT)

Contiguous Allocation Method
● An allocation method refers to how disk blocks are allocated for

files:
● Each file occupies set of contiguous blocks

○ Best performance in most cases
○ Simple – only starting location (block #) and length (number of

blocks) are required
○ Problems include:

■ Finding space on the disk for a file,
■ Knowing file size,
■ External fragmentation, need for compaction off-line

(downtime) or on-line

Contiguous Allocation

Extent-Based Systems
● Many newer file systems (i.e., Veritas

File System) use a modified contiguous
allocation scheme

● Extent-based file systems allocate disk
blocks in extents

● An extent is a contiguous block of disks

○ Extents are allocated for file allocation

○ A file consists of one or more extents

APFS (Apple), HFS plus(Apple),
NTFS(windows), ext4 (Linux), etc.

In indirect/direct block addressing, logical and physical blocks are
mapped one-to-one,

in extent-based mapping, a range of logical blocks are mapped to
a range of physical blocks using a single extent structure.

https://blogs.oracle.com/linux/post/extents-and-extent-allocati
on-in-ext4

Example File:

Extent Logical Blocks Physical Blocks Length

 0 0 - 3 104 - 107 4

 1 4 112 1

struct ext4_extent {
 __le32 ee_block = 0;
 __le16 ee_len = 4;
 __le16 ee_start_hi = 0;
 __le32 ee_start_lo = 104;
};

https://blogs.oracle.com/linux/post/extents-and-extent-allocation-in-ext4
https://blogs.oracle.com/linux/post/extents-and-extent-allocation-in-ext4

Straw man: contiguous allocation

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Straw man #2: Linked files

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Linked Allocation Example

● Each file is a linked list of disk blocks: blocks may be scattered
anywhere on the disk

● Scheme

Example: DOS FS (simplified)

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

File-Allocation Table

● Beginning of volume has
table, indexed by block
number

● Much like a linked list, but
faster on disk and
cacheable

● New block allocation
simple

FAT discussion

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Approach #3: Indexed Allocation Method

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Example of Indexed Allocation

Indexed files

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Multi-level indexed files (old BSD FS,UNIX UFS)

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

UNIX UFS

● 4K bytes per block,
32-bit addresses

● More index blocks than
can be addressed with
32-bit file pointer

Old BSD FS discussion

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

More about inodes

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Directories

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

A short history of directories

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Hierarchical Unix

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Naming magic

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Unix example: /a/b/c.c

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Default context: working directory

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Hard and soft links (synonyms)

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Case study: speeding up FS

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Example

side note: this problem is exactly what disk defragmentation tools help with..

★ Smaller blocks were good because they minimized internal fragmentation (waste within the
block),

★ but bad for transfer as each block might require a positioning overhead to reach it
 How do we make the file system “disk aware”?

https://pages.cs.wisc.edu/~remzi/OSTEP/file-ffs.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-ffs.pdf

A plethora of performance costs

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Problem: Internal fragmentation

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Solution: fragments

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

BSD FFS (Fast File System)

The idea is to design the file system structures and allocation policies to be “disk
aware”

https://pages.cs.wisc.edu/~remzi/OSTEP/file-ffs.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-ffs.pdf

Clustering related objects in FFS

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

A per-group inode bitmap (ib) and data bitmap (db) serve this role for inodes and
data blocks in each group

https://pages.cs.wisc.edu/~remzi/OSTEP/file-ffs.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-ffs.pdf

Clustering in FFS

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

What does disk layout look like?

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Finding space for related objs

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Using a bitmap

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

So what did we gain?

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Other hacks

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/file_systems.pdf

Crash recovery

How To Update The Disk Despite
Crashes?

Early file systems took a simple
approach to crash consistency

● Basically, they decided to let
inconsistencies happen and
then fix them later (when
rebooting).

● A classic example of this lazy
approach is found in a tool that
does this: fsck

https://pages.cs.wisc.edu/~remzi/O
STEP/file-journaling.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

Fixing corruption – fsck

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

A basic summary of what fsck does:

Superblock: fsck first checks if the superblock looks reasonable

● mostly doing sanity checks such as making sure the file system size is greater
than the number of blocks that have been allocated.

Free blocks: Next, fsck scans the inodes, indirect blocks, double indirect blocks,
etc., to build an understanding of which blocks are currently allocated within the
file system

● It uses this knowledge to produce a correct version of the allocation bitmaps
● if there is any inconsistency between bitmaps and inodes, it is resolved by

trusting the information within the inodes.

https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

A basic summary of what fsck does:

Inode state

Inode links

Duplicates

Bad blocks

Directory checks

building a working fsck requires intricate knowledge of the file system; making
sure such a piece of code works correctly in all cases can be challenging

https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

Crash recovery permeates FS code

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Crash recovery permeates FS code

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Sidenote: kernel-internal disk write routines

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Ordering of updates

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Performance vs. consistency

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

● Soft updates
● Journaling
● log structured file

system (LFS)
● copy on write file

systems

Soft updates an approach to
maintaining file system metadata
integrity in the event of a crash or
power outage.

Journaling uses transactions to
achieve consistency

● Neither journaling nor soft
updates guarantees that no
data will be lost,

● but they do make sure that the
file system remains consistent.

First attempt: Ordered updates

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Example ordered updates

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Problem: Cyclic dependencies

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Cycle dependency

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

More problems

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Breaking dependencies with rollback

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Breaking dependencies with rollback

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Breaking dependencies with rollback

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Breaking dependencies with rollback

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Soft updates

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

An alternative: Journaling

Many uses this idea:

Linux ext3 and ext4, reiserfs, IBM’s JFS, SGI’s XFS, and Windows NTFS
https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Journaling details

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Case study: XFS

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

B+trees

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Other approaches: Copy-on-write (yes, COW)

used e.g. ZFS

it places new updates to previously unused locations on disk.

After a number of updates are completed, COW file systems flip the root structure of
the file system to include pointers to the newly updated structures.

https://pages.cs.wisc.edu/~remzi/O
STEP/file-journaling.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

Other approaches: Log Structured File System (LFS)

● Log-structured file system is a file system in which data and metadata
are written sequentially to a circular buffer, called a log.

● A log-structured file system thus treats its storage as a circular log and
writes sequentially to the head of the log.

buffer writes,
then commit all at
once

https://pages.cs.wisc.edu/~remzi/OSTEP/file-lfs.pdf

https://en.wikipedia.org/wiki/Log-structured_file_system
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Circular_buffer
https://en.wikipedia.org/wiki/Log_file
https://en.wikipedia.org/wiki/Circular_buffer
https://pages.cs.wisc.edu/~remzi/OSTEP/file-lfs.pdf

Flash-Friendly
File System

(F2FS)
see

https://www.kernel.org/doc/Docu
mentation/filesystems/f2fs.txt

https://www.kernel.org/doc/Documentation/filesystems/f2fs.txt
https://www.kernel.org/doc/Documentation/filesystems/f2fs.txt

Flash-Friendly File System (F2FS)

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

F2FS layout

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

F2FS inode

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Multi-head logging

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

https://www.scs.stanford.edu/24wi-cs212/notes/advanced_fs.pdf

Network file
systems, WAFL,

other issues
not included in the

exam(sinava dahil degil)

File System

● General-purpose computers can have multiple storage devices

● Devices can be sliced into partitions, which hold volumes

● Volumes can span multiple partitions

● Each volume usually formatted into a file system

● # of file systems varies, typically dozens available to choose from

● Typical storage device organization:

Solaris File Systems

Partitions and Mounting

● Partition can be a volume containing a file system (“cooked”) or raw – just a
sequence of blocks with no file system

● Boot block can point to boot volume or boot loader set of blocks that contain enough
code to know how to load the kernel from the file system
○ Or a boot management program for multi-os booting

● Root partition contains the OS, other partitions can hold other OSes, other file
systems, or be raw
○ Mounted at boot time

○ Other partitions can mount automatically or manually on mount points –
location at which they can be accessed

● At mount time, file system consistency checked

○ Is all metadata correct?
■ If not, fix it, try again
■ If yes, add to mount table, allow access

File Systems and Mounting

(a) Unix-like file
 system directory
 tree

(a) Unmounted file
 system

After mounting (b)
into the existing
directory tree

File Sharing

● Allows multiple users / systems access to the same files

● Permissions / protection must be implemented and accurate

○ Most systems provide concepts of owner, group member

○ Must have a way to apply these between systems

Virtual File Systems

● Virtual File Systems (VFS) on Unix provide an object-oriented way of
implementing file systems

● VFS allows the same system call interface (the API) to be used for
different types of file systems

○ Separates file-system generic operations from implementation details

○ Implementation can be one of many file systems types, or network file
system

■ Implements vnodes which hold inodes or network file details

○ Then dispatches operation to appropriate file system implementation
routines

Virtual File Systems (Cont.)

● The API is to the VFS interface, rather than any specific type of file system

● Example

Virtual File System Implementation

● For example, Linux has four object types:

○ inode, file, superblock, dentry

● VFS defines set of operations on the objects that must be implemented

○ Every object has a pointer to a function table

■ Function table has addresses of routines to implement that function on that object

■ For example:

■ • int open(. . .)—Open a file

■ • int close(. . .)—Close an already-open file

■ • ssize t read(. . .)—Read from a file

■ • ssize t write(. . .)—Write to a file

■ • int mmap(. . .)—Memory-map a file

Remote File Systems

● Sharing of files across a network

● First method involved manually sharing each file – programs like ftp

● Second method uses a distributed file system (DFS)

○ Remote directories visible from local machine

● Third method – World Wide Web

○ A bit of a revision to first method

○ Use browser to locate file/files and download /upload

○ Anonymous access doesn’t require authentication

Client-Server Model

● Sharing between a server (providing access to a file system via a
network protocol) and a client (using the protocol to access the remote
file system)

● Identifying each other via network ID can be spoofed, encryption can
be performance expensive

● NFS an example
○ User auth info on clients and servers must match (UserIDs for

example)
○ Remote file system mounted, file operations sent on behalf of user

across network to server
○ Server checks permissions, file handle returned
○ Handle used for reads and writes until file closed

Distributed Information Systems
● Aka distributed naming services, provide unified access to info needed for

remote computing
● Domain name system (DNS) provides host-name-to-network-address

translations for the Internet
● Others like network information service (NIS) provide user-name,

password, userID, group information
● Microsoft’s common Internet file system (CIFS) network info used with user

auth to create network logins that server uses to allow to deny access
○ Active directory distributed naming service
○ Kerberos-derived network authentication protocol

● Industry moving toward lightweight directory-access protocol (LDAP) as
secure distributed naming mechanism

Consistency Semantics
● Important criteria for evaluating file sharing-file systems

● Specify how multiple users are to access shared file simultaneously

○ When modifications of data will be observed by other users

○ Directly related to process synchronization algorithms, but atomicity across a network has high
overhead (see Andrew File System)

● The series of accesses between file open and closed called file session
● UNIX semantics

○ Writes to open file immediately visible to others with file open

○ One mode of sharing allows users to share pointer to current I/O location in file

○ Single physical image, accessed exclusively, contention causes process delays

● Session semantics (Andrew file system (OpenAFS))

○ Writes to open file not visible during session, only at close

○ Can be several copies, each changed independently

The Sun Network File System (NFS)

● An implementation and a specification of a software system for
accessing remote files across LANs (or WANs)

● The implementation originally part of SunOS operating system,
now industry standard / very common

● Can use unreliable datagram protocol (UDP/IP) or TCP/IP, over
Ethernet or other networks

NFS (Cont.)

● Interconnected workstations viewed as a set of independent machines
with independent file systems, which allows sharing among these file
systems in a transparent manner
○ A remote directory is mounted over a local file system directory

■ The mounted directory looks like an integral subtree of the local
file system, replacing the subtree descending from the local
directory

○ Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to be
provided

■ Files in the remote directory can then be accessed in a
transparent manner

○ Subject to access-rights accreditation, potentially any file system (or
directory within a file system), can be mounted remotely on top of any
local directory

NFS (Cont.)

● NFS is designed to operate in a heterogeneous environment of
different machines, operating systems, and network architectures;
the NFS specifications independent of these media

● This independence is achieved through the use of RPC primitives
built on top of an External Data Representation (XDR) protocol used
between two implementation-independent interfaces

● The NFS specification distinguishes between the services provided
by a mount mechanism and the actual remote-file-access services

NFS Mounting Example

● Three independent file systems

NFS Mounting Example (Cont.)

● Mounts and cascading mounts

Mount
s Cascading mounts

NFS Mount Protocol

● Establishes initial logical connection between server and client

● Mount operation includes name of remote directory to be mounted and name of
server machine storing it

○ Mount request is mapped to corresponding RPC and forwarded to mount
server running on server machine

○ Export list – specifies local file systems that server exports for mounting,
along with names of machines that are permitted to mount them

● Following a mount request that conforms to its export list, the server returns a
file handle—a key for further accesses

● File handle – a file-system identifier, and an inode number to identify the
mounted directory within the exported file system

● The mount operation changes only the user’s view and does not affect the
server side

NFS Protocol

● Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:
○ searching for a file within a directory
○ reading a set of directory entries
○ manipulating links and directories
○ accessing file attributes
○ reading and writing files

● NFS servers are stateless; each request has to provide a full set of
arguments (NFS V4 is newer, less used – very different, stateful)

● Modified data must be committed to the server’s disk before results
are returned to the client (lose advantages of caching)

● The NFS protocol does not provide concurrency-control mechanisms

Three Major Layers of NFS Architecture

● UNIX file-system interface (based on the open, read, write, and
close calls, and file descriptors)

● Virtual File System (VFS) layer – distinguishes local files from remote
ones, and local files are further distinguished according to their
file-system types

○ The VFS activates file-system-specific operations to handle local
requests according to their file-system types

○ Calls the NFS protocol procedures for remote requests

● NFS service layer – bottom layer of the architecture

○ Implements the NFS protocol

Schematic View of NFS Architecture

NFS Path-Name Translation

● Performed by breaking the path into component names and
performing a separate NFS lookup call for every pair of component
name and directory vnode

● To make lookup faster, a directory name lookup cache on the client’s
side holds the vnodes for remote directory names

NFS Remote Operations

● Nearly one-to-one correspondence between regular UNIX system
calls and the NFS protocol RPCs (except opening and closing files)

● NFS adheres to the remote-service paradigm, but employs buffering
and caching techniques for the sake of performance

● File-blocks cache – when a file is opened, the kernel checks with the
remote server whether to fetch or revalidate the cached attributes

○ Cached file blocks are used only if the corresponding cached
attributes are up to date

● File-attribute cache – the attribute cache is updated whenever new
attributes arrive from the server

● Clients do not free delayed-write blocks until the server confirms that
the data have been written to disk

Efficiency and Performance

● Efficiency dependent on:

○ Disk allocation and directory algorithms

○ Types of data kept in file’s directory entry

○ Pre-allocation or as-needed allocation of metadata structures

○ Fixed-size or varying-size data structures

Efficiency and Performance (Cont.)

● Performance

○ Keeping data and metadata close together

○ Buffer cache – separate section of main memory for frequently used blocks

○ Synchronous writes sometimes requested by apps or needed by OS

■ No buffering / caching – writes must hit disk before acknowledgement

■ Asynchronous writes more common, buffer-able, faster

○ Free-behind and read-ahead – techniques to optimize sequential access

○ Reads frequently slower than writes

Page Cache

● A page cache caches pages rather than disk blocks using
virtual memory techniques and addresses

● Memory-mapped I/O uses a page cache

● Routine I/O through the file system uses the buffer (disk) cache

● This leads to the following figure

I/O Without a Unified Buffer Cache

Unified Buffer Cache

● A unified buffer cache uses the same page cache to cache
both memory-mapped pages and ordinary file system I/O to
avoid double caching

▪ But which caches get priority, and what replacement
algorithms to use?

I/O Using a Unified Buffer Cache

Example: WAFL File System

● Used on Network Appliance “Filers” – distributed file system appliances

● “Write-anywhere file layout”

● Serves up NFS, CIFS, http, ftp

● Random I/O optimized, write optimized

○ NVRAM for write caching

● Similar to Berkeley Fast File System, with extensive modifications

The WAFL File Layout

Snapshots in WAFL

The Apple File System

