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The First Commercial Disk Drive

1956
IBM RAMDAC computer 
included the IBM Model 350 
disk storage system

5M (7 bit) characters
50 x 24” platters
Access time = < 1 second



Overview of Mass Storage Structure
● Bulk of secondary storage for modern computers is 

hard disk drives (HDDs) and nonvolatile memory 
(NVM) devices

● HDDs spin platters of magnetically-coated material 
under moving read-write heads

○ Drives rotate at 60 to 250 times per second

○ Transfer rate is rate at which data flow between drive 
and computer

○ Positioning time (random-access time) is time to 
move disk arm to desired cylinder (seek time) and 
time for desired sector to rotate under the disk head 
(rotational latency)

○ Head crash results from disk head making contact 
with the disk surface  -- That’s bad

● Disks can be removable



Cylinders, tracks, & sectors



Disk positioning system
Move head to specific track and keep it there

- Resist physical shocks, imperfect tracks, etc.

A seek consists of up to four phases:

● - speedup–accelerate arm to max speed or half 
way point

● - coast–at max speed (for long seeks)
● - slowdown–stops arm near destination
● - settle–adjusts head to actual desired track

Very short seeks dominated by settle time (∼1 ms)

Short (200-400 cyl.) seeks dominated by speedup

● - Accelerations of 40g
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Disk positioning system

Head switches comparable to short seeks

● May also require head adjustment
● Settles take longer for writes than for reads – 

Why?
○ If read strays from track, catch error with checksum, 

retry
○ If write strays, you’ve just clobbered some other 

track

Disk keeps table of pivot motor power

● Maps seek distance to power and time
● Disk interpolates over entries in table
● Table set by periodic “thermal re-calibration”
● But, e.g., ∼500 ms recalibration every ∼25 min bad 

for AV

“Average seek time” quoted can be many things

● Time to seek 1/3 disk, 1/3 time to seek whole disk
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Hard Disk Drives

● Platters range from .85” to 14” (historically)

○ Commonly 3.5”, 2.5”, and 1.8”

● Range from 30GB to 3TB per drive

● Performance 

○ Transfer Rate – theoretical – 6 Gb/sec

○ Effective Transfer Rate – real – 1Gb/sec

○ Seek time from 3ms to 12ms – 9ms 
common for desktop drives

○ Average seek time measured or calculated 
based on 1/3 of tracks

○ Latency based on spindle speed
■ 1 / (RPM / 60) = 60 / RPM

○ Average latency = ½ latency



Sectors

Disk interface presents linear array of sectors

● Historically 512 B, but 4 KiB in “advanced format” disks
● Written atomically (even if there is a power failure)

Disk maps logical sector #s to physical sectors

● Zoning–puts more sectors on longer tracks
● Track skewing–sector 0 pos. varies by track

○  because of sequential access speed
● Sparing–flawed sectors remapped elsewhere

OS doesn’t know logical to physical sector mapping

● Larger logical sector # difference means longer seek 
time

● Highly non-linear relationship (and depends on zone)
● OS has no info on rotational positions
● Can empirically build table to estimate times
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Disk interface

Controls hardware, mediates access

Computer, disk often connected by 
bus (e.g., ATA, SCSI, SATA)

● Multiple devices may contents 
for bus

Possible disk/interface features:

● Disconnect from bus during requests
● Command queuing: Give disk multiple requests

○ Disk can schedule them using rotational information
● Disk cache used for read-ahead

○ Otherwise, sequential reads would incur whole 
revolution

○ Cross track boundaries? Can’t stop a head-switch
● Some disks support write caching

○ But data not stable—not suitable for all requests
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Hard Disk Performance

● Access Latency = Average access time = average seek time + average latency

○ For fastest disk 3ms + 2ms = 5ms

○ For slow disk 9ms + 5.56ms = 14.56ms

● Average I/O time = average access time + (amount to transfer / transfer rate) + controller 
overhead

● For example to transfer a 4KB block on a 7200 RPM disk with a 5ms average seek time, 
1Gb/sec transfer rate with a .1ms controller overhead =

○ 5ms + 4.17ms + 0.1ms + transfer time =

○ Transfer time = 4KB / 1Gb/s * 8Gb / GB * 1GB / 10242KB = 32 / (10242) = 0.031 ms 

○ Average I/O time for 4KB block = 9.27ms + .031ms = 9.301ms



Disk performance

Placement & ordering of requests a huge issue

● Sequential I/O much, much faster than 
random

● Long seeks much slower than short ones
● Power might fail any time, leaving 

inconsistent state

Must be careful about order for crashes

● More on this in next two lectures

Try to achieve contiguous accesses where 
possible

● E.g., make big chunks of individual files 
contiguous

Try to order requests to minimize seek times

● OS can only do this if it has multiple 
requests to order

● Requires disk I/O concurrency
● High-performance apps try to maximize 

I/O concurrency

Next: How to schedule concurrent requests
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Disk Scheduling

● The operating system is 
responsible for using hardware 
efficiently — for the disk drives, this 
means having a fast access time 
and disk bandwidth

● Minimize seek time

● Seek time ≈ seek distance

● Disk bandwidth is the total number 
of bytes transferred, divided by the 
total time between the first request 
for service and the completion of 
the last transfer



Scheduling: FCFS

“First Come First Served”

- Process disk requests in the 
order they are received



Scheduling: FCFS
Advantages

● Easy to implement
● Good fairness

Disadvantages

● Cannot exploit request locality
● Increases average latency, 

decreasing throughput
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Shortest positioning time first (SPTF)

Shortest positioning time first 
(SPTF)

- Always pick request with shortest 
seek time

Also called Shortest Seek Time 
First (SSTF)
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Shortest positioning time first (SPTF)
Advantages

● - Exploits locality of disk requests
● - Higher throughput

Disadvantages

● Starvation
● Don’t always know what request 

will be fastest

Improvement: Aged SPTF

● Give older requests higher 
priority

● Adjust “effective” seek time with 
weighting factor:

● Teff = Tpos − W · Twait
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“Elevator” scheduling (SCAN)

Sweep across disk, servicing all requests 
passed

● Like SPTF, but next seek must be in 
same direction

● Switch directions only if no further 
requests
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https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf


“Elevator” scheduling (SCAN)

Advantages

● Takes advantage of locality
● Bounded waiting

Disadvantages

● Cylinders in the middle get better 
service

● Might miss locality SPTF could exploit

CSCAN: Only sweep in one direction

● Very commonly used algorithm in Unix

Also called LOOK/CLOOK in textbook

● - (Textbook uses [C]SCAN to mean 
scan entire disk uselessly)

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf 
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C-SCAN 
CSCAN: Only sweep in 
one direction

● When it reaches the 
other end, however, 
it immediately 
returns to the 
beginning of the 
disk, without 
servicing any 
requests on the 
return trip



VSCAN(r)

Continuum between SPTF and SCAN

● Like SPTF, but slightly changes “effective” 
positioning time

● If request in same direction as previous seek: 
○ Teff = Tpos

● Otherwise: 
○ Teff = Tpos + r · Tmax

when r = 0, get SPTF, when r = 1, get SCAN

E.g., r = 0.2 works well

• Advantages and disadvantages

- Those of SPTF and SCAN, depending on how 
r is set

• See [Worthington] for good description and 
evaluation of

various disk scheduling algorithms
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Selecting a Disk-Scheduling Algorithm

● SSTF is common and has a natural appeal

● SCAN and C-SCAN perform better for systems that place a heavy load on the disk

○ Less starvation, but still possible

● To avoid starvation Linux implements deadline scheduler

● In RHEL 7 also NOOP and completely fair queueing scheduler (CFQ) also 
available, defaults vary by storage device



Nonvolatile 
Memory Devices

● If disk-drive like, then called solid-state disks 
(SSDs)

● Other forms include USB drives (thumb drive, 
flash drive), DRAM disk replacements, 
surface-mounted on motherboards, and main 
storage in devices like smartphones

● Can be more reliable than HDDs

● More expensive per MB

● Maybe have shorter life span – need careful 
management

● Less capacity

● But much faster

● Busses can be too slow -> connect directly to 
PCI for example

● No moving parts, so no seek time or rotational 
latency



Nonvolatile Memory Devices

● Have characteristics that present 
challenges

● Read and written in “page” increments 
(think sector) but can’t overwrite in 
place
○ Must first be erased, and erases happen in 

larger ”block” increments

○ Can only be erased a limited number of 
times before worn out – ~ 100,000

○ Life span measured in drive writes per day 
(DWPD)

■ A 1TB NAND drive with rating of 
5DWPD is expected to have 5TB per 
day written within warrantee period 
without failing



Flash memory

Today, people increasingly using flash memory

Completely solid state (no moving parts)

● Remembers data by storing charge
● Lower power consumption and heat
● No mechanical seek times to worry about

Limited # overwrites possible

● Blocks wear out after 10,000 (MLC) – 
100,000 (SLC) erases

● Requires flash translation layer (FTL) to 
provide wear leveling, 

○ so repeated writes to logical block don’t 
wear out physical block

● FTL can seriously impact performance
● In particular, random writes very expensive 

[Birrell]

Limited durability

● Charge wears out over time
● Turn off device for a year, you can 

potentially lose data

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf 

http://research.microsoft.com/pubs/63681/TR-2005-176.pdf
https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf


Types of flash memory

Types of flash memory

NAND flash (most prevalent for storage)

● Higher density (most used for storage)
● Faster erase and write
● More errors internally, so need error 

correction

NOR flash

● Faster reads in smaller data units
● Can execute code straight out of NOR 

flash
● Significantly slower erases

Single-level cell (SLC) vs. Multi-level cell (MLC)

● MLC encodes multiple (two) bits in voltage 
level

● MLC slower to write than SLC
● MLC has lower durability (bits decay 

faster)

Nowadays, most flash drives are TLC (or even 
QLC)

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf 

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf


NAND flash overview

Flash device has 2112-byte pages

● 2048 bytes of data + 64 bytes metadata & 
ECC

Blocks contain 64 (SLC) or 128 (MLC) pages

Blocks segregated into 2–4 planes

● All planes contend for same package pins
● But can access their blocks in parallel to 

overlap latencies

Can read one page at a time

● - Takes 25 μsec + time to get data off chip

Must erase whole block before programing

● Erase sets all bits to 1—very expensive (2 
msec)

● Programming pre-erased block requires 
moving data to internal buffer, then 200 
(SLC)–800 (MLC) μsec
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Flash characteristics

http://cseweb.ucsd.edu/~swanson/papers/Asplos2009Gordon.pdf
https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf  
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NAND Flash Controller Algorithms

● With no overwrite, pages end up with mix of valid and invalid data
● To track which logical blocks are valid, controller maintains flash 

translation layer (FTL) table
● Also implements garbage collection to free invalid page space
● Allocates overprovisioning to provide working space for GC
● Each cell has lifespan, so wear leveling needed to write equally to all 

cells

NAND block with valid and invalid pages



FTL straw man: in-memory map

Keep in-memory map of logical → physical page #

● On write, pick unused page, mark previous 
physical page free

● Repeated writes of a logical page will hit 
different physical pages

Store map in device memory, but must rebuild on 
power-up

idea: Put header on each page, scan all headers on power-up:

⟨logical page #, Allocated bit, Written bit, Obsolete bit⟩

● - A-W-O = 1-1-1: free page
● - A-W-O = 0-1-1: about to write page
● - A-W-O = 0-0-1: successfully written page
● - A-W-O = 0-0-0: obsolete page (can erase block without 

copying)

Why the 0-1-1 state?

● Why the 0-1-1 state? After power failure partly written ( 
not free)

What’s wrong still?

● FTL requires alot of RAM on device

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf 
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More realistic FTL

Store the FTL map in the flash device itself

● Add one header bit to distinguish map 
page from data page

● Logical read may miss map cache, require 
2 flash reads

● Keep smaller “map-map” in memory, 
cache some map pages

Must garbage-collect blocks with obsolete 
pages

● Copy live pages to a new block, erase old 
block

● Always need free blocks, can’t use 100% 
physical storage

Problem: write amplification

● Small random writes punch holes in many 
blocks

● If small writes require garbage-collecting a 
90%-full blocks

○ ...means you are writing 10× more physical 
than logical data!

Must also periodically re-write even blocks w/o 
holes

● Wear leveling ensures active blocks don’t 
wear out first

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf 
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NVM Scheduling

● No disk heads or rotational latency but still room for optimization
● In RHEL 7 NOOP (no scheduling) is used but adjacent LBA requests are 

combined
○ NVM best at random I/O, HDD at sequential

○ Throughput can be similar

○ Input/Output operations per second (IOPS) much higher with NVM (hundreds of 
thousands vs hundreds)

○ But write amplification (one write, causing garbage collection and many read/writes) can 
decrease the performance advantage



the rest is skipped in the lecture.



Error Detection and Correction

● Fundamental aspect of many parts of computing (memory, networking, 
storage)

● Error detection determines if there a problem has occurred (for example a 
bit flipping)
○ If detected, can halt the operation

○ Detection frequently done via parity bit

● Parity one form of checksum – uses modular arithmetic to compute, store, 
compare values of fixed-length words
○ Another error-detection method common in networking is cyclic redundancy check (CRC) 

which uses hash function to detect multiple-bit errors

● Error-correction code (ECC) not only detects, but can correct some errors
○ Soft errors correctable, hard errors detected but not corrected



Storage Device Management

● Low-level formatting, or physical formatting — Dividing a disk into 
sectors that the disk controller can read and write
○ Each sector can hold header information, plus data, plus error correction code (ECC)

○ Usually 512 bytes of data but can be selectable

● To use a disk to hold files, the operating system still needs to record its 
own data structures on the disk
○ Partition the disk into one or more groups of cylinders, each treated as a logical disk

○ Logical formatting or “making a file system”

○ To increase efficiency most file systems group blocks into clusters
■ Disk I/O done in blocks
■ File I/O done in clusters



Storage Device Management (cont.)

● Root partition contains the OS, other partitions can hold other Oses, 
other file systems, or be raw
○ Mounted at boot time

○ Other partitions can mount automatically or manually

● At mount time, file system consistency checked
○ Is all metadata correct?

4 If not, fix it, try again
4 If yes, add to mount table, allow access

● Boot block can point to boot volume or boot loader set of blocks that 
contain enough code to know how to load the kernel from the file system
○ Or a boot management program for multi-os booting



Device Storage Management (Cont.)

● Raw disk access for apps that 
want to do their own block 
management, keep OS out of the 
way (databases for example)

● Boot block initializes system

○ The bootstrap is stored in ROM, 
firmware

○ Bootstrap loader program stored in 
boot blocks of boot partition

● Methods such as sector sparing 
used to handle bad blocks

Booting from secondary 
storage in Windows



Swap-Space Management

● Used for moving entire processes (swapping), or pages (paging), 
from DRAM to secondary storage when DRAM not large enough for 
all processes

● Operating system provides swap space management

○ Secondary storage slower than DRAM, so important to optimize performance

○ Usually multiple swap spaces possible – decreasing I/O load on any given device

○ Best to have dedicated devices

○ Can be in raw partition or a file within a file system (for convenience of adding)

○ Data structures for swapping on Linux systems:



Storage Attachment

● Computers access storage in three ways

○ host-attached

○ network-attached

○ cloud

● Host attached access through local I/O ports, using one of several technologies

○ To attach many devices, use storage busses such as USB, firewire, thunderbolt

○ High-end systems use fibre channel (FC)

■ High-speed serial architecture using fibre or copper cables

■ Multiple hosts and storage devices can connect to the FC fabric



Network-Attached Storage

● Network-attached storage (NAS) is storage made available over a 
network rather than over a local connection (such as a bus)

○ Remotely attaching to file systems

● NFS and CIFS are common protocols

● Implemented via remote procedure calls (RPCs) between host and 
storage over typically TCP or UDP on IP network

● iSCSI protocol uses IP network to carry the SCSI protocol

○ Remotely attaching to devices (blocks)



Cloud Storage

● Similar to NAS, provides access to storage across a network

○ Unlike NAS, accessed over the Internet or a WAN to remote data center

● NAS presented as just another file system, while cloud storage is 
API based, with programs using the APIs to provide access

○ Examples include Dropbox, Amazon S3, Microsoft OneDrive, Apple iCloud

○ Use APIs because of latency and failure scenarios (NAS protocols wouldn’t 
work well)



Storage Array

● Can just attach disks, or arrays of disks
● Avoids the NAS drawback of using network bandwidth
● Storage Array has controller(s), provides features to attached host(s)

○ Ports to connect hosts to array

○ Memory, controlling software (sometimes NVRAM, etc)

○ A few to thousands of disks

○ RAID, hot spares, hot swap (discussed later)

○ Shared storage -> more efficiency

○ Features found in some file systems

■ Snaphots, clones, thin provisioning, replication, deduplication, etc



Storage Area Network

● Common in large storage environments

● Multiple hosts attached to multiple storage arrays – flexible



Storage Area Network (Cont.)

● SAN is one or more storage arrays

○ Connected to one or more Fibre Channel 
switches or InfiniBand (IB) network

● Hosts also attach to the switches

● Storage made available via LUN 
Masking from specific arrays to 
specific servers

● Easy to add or remove storage, add 
new host and allocate it storage

● Why have separate storage networks 
and communications networks?
○ Consider iSCSI, FCOE A Storage Array



RAID Structure

● RAID – redundant array of inexpensive disks

○ multiple disk drives provides reliability via redundancy

● Increases the mean time to failure

● Mean time to repair – exposure time when another failure could cause data loss

● Mean time to data loss based on above factors

● If mirrored disks fail independently, consider disk with 1300,000 mean time to 
failure and 10 hour mean time to repair

○ Mean time to data loss is 100, 0002 / (2 ∗ 10) = 500 ∗ 106 hours, or 57,000 years! 

● Frequently combined with NVRAM to improve write performance

● Several improvements in disk-use techniques involve the use of multiple disks 
working cooperatively



RAID (Cont.)

● Disk striping uses a group of disks as one storage unit

● RAID is arranged into six different levels

● RAID schemes improve performance and improve the reliability of the 
storage system by storing redundant data

○ Mirroring or shadowing (RAID 1) keeps duplicate of each disk

○ Striped mirrors (RAID 1+0) or mirrored stripes (RAID 0+1) provides high performance 
and high reliability

○ Block interleaved parity (RAID 4, 5, 6) uses much less redundancy

● RAID within a storage array can still fail if the array fails, so automatic 
replication of the data between arrays is common

● Frequently, a small number of hot-spare disks are left unallocated, 
automatically replacing a failed disk and having data rebuilt onto them



RAID Levels



RAID (0 + 1) and (1 + 0)



Other Features

● Regardless of where RAID implemented, other useful features can be added

● Snapshot is a view of file system before a set of changes take place (i.e. at a point 
in time)
○ More in Ch 12

● Replication is automatic duplication of writes between separate sites

○ For redundancy and disaster recovery

○ Can be synchronous or asynchronous

● Hot spare disk is unused, automatically used by RAID production if a disk fails to 
replace the failed disk and rebuild the RAID set if possible
○ Decreases mean time to repair



Extensions

● RAID alone does not prevent or detect data 
corruption or other errors, just disk failures

● Solaris ZFS adds checksums of all data and 
metadata

● Checksums kept with pointer to object, to detect if 
object is the right one and whether it changed

● Can detect and correct data and metadata 
corruption

● ZFS also removes volumes, partitions

○ Disks allocated in pools

○ Filesystems with a pool share that pool, use and release 
space like malloc() and free() memory allocate / 
release calls ZFS checksums all 

metadata and data



Traditional and Pooled Storage



Object Storage

● General-purpose computing, file systems not sufficient for very large 
scale

● Another approach – start with a storage pool and place objects in it

○ Object just a container of data

○ No way to navigate the pool to find objects (no directory structures, few services

○ Computer-oriented, not user-oriented

● Typical sequence

○ Create an object within the pool, receive an object ID

○ Access object via that ID

○ Delete object via that ID



Object Storage (Cont.)

● Object storage management software like Hadoop file system 
(HDFS) and Ceph determine where to store objects, manages 
protection

○ Typically by storing N copies, across N systems, in the object storage cluster

○ Horizontally scalable

○ Content addressable, unstructured
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