
11  I/O Systems

● Overview

● I/O Hardware

● Application I/O Interface

● Kernel I/O Subsystem

● Transforming I/O Requests to 
Hardware Operations

● STREAMS

● Performance

chapter 12 of the book



Old-school memory and I/O buses

I/O bus
1880Mbps 1056Mbps

Crossbar

Memory

CPU

https://www.scs.stanford.edu/24wi-cs212/note
s/io_disks.pdf 

● CPU accesses physical memory over a bus
● Devices access memory over I/O bus with DMA
● Devices can appear to be a region of memory

Memory and I/O buses

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf
https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf


bus

I/O

APIC

CPU

North

South

Bridge

bus
ISA

CPU

bus
AGP

PCI
IRQsbus

PCI

Bridge

Main

memory

front-
side
bus

USB

2.0
https://www.scs.stanford.edu/24wi-cs212/note
s/io_disks.pdf 

Realistic ~2005 PC architecture

Advanced 
Programmable 
Interrupt 
Controller

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf
https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf


https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf 
https://en.wikipedia.org/wiki/Intel_X58 

Modern PC architecture (intel) 

IOH-I/O hub

ICH = I/O controller Hub

QPI = Intel QuickPath 
Interconnect - Wikipedia 

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf
https://en.wikipedia.org/wiki/Intel_X58
https://en.wikipedia.org/wiki/Intel_QuickPath_Interconnect
https://en.wikipedia.org/wiki/Intel_QuickPath_Interconnect


https://www.scs.stanford.edu/24wi-cs212/note
s/io_disks.pdf 

CPU now entirely subsumes IOH [intel]

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf
https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf
https://www.intel.com/content/www/us/en/products/sku/122941/intel-x299-chipset/specifications.html


4094 pins: both memory controller and 128 lanes PCIe

directly on chip!

AMD EPYC is essentially an SoC



What is memory

SRAM – Static RAM

● Like two NOT gates circularly wired input-to-output
● 4–6 transistors per bit, actively holds its value
● Very fast, used to cache slower memory

DRAM – Dynamic RAM

● A capacitor + gate, holds charge to indicate bit value
● 1 transistor per bit – extremely dense storage
● Charge leaks – need slow comparator to decide if bit 1 or 0
● Must rewrite charge after reading, and periodically refresh

VRAM – “Video RAM”

● - Dual ported DRAM, can write while someone else reads



What is I/O bus? E.g., PCI:A Typical PC Bus Structure

● Incredible variety of I/O devices

○ Storage

○ Transmission

○ Human-interface

● Common concepts – signals from I/O devices 
interface with computer

○ Port – connection point for device

○ Bus - daisy chain or shared direct access

■ PCI bus common in PCs and servers, PCI 
Express (PCIe) 

■ expansion bus connects relatively slow 
devices

■ Serial-attached SCSI (SAS) common disk 
interface



I/O Hardware (Cont.)

○ Controller (host adapter) – electronics that operate port, bus, device

■ Sometimes integrated

■ Sometimes separate circuit board (host adapter)

■ Contains processor, microcode, private memory, bus controller, etc.

● Some talk to per-device controller with bus controller, microcode, memory, etc.



Device drivers

● I/O management is a major component of 
operating system design and operation

○ Important aspect of computer operation

○ I/O devices vary greatly

○ Various methods to control them

○ Performance management 

○ New types of devices frequent

● Ports, busses, device controllers connect to 
various devices

● Device drivers encapsulate device details

○ Present uniform device-access interface to I/O 
subsystem



Communicating 
with a device

● communicating with devices 
through registers

○ Data-in register, data-out register, 
status register, control register

○ Typically 1-4 bytes, or FIFO buffer

● communicating with devices 
through memory-mapped I/O

○ a certain portion of the processor's 
address space is mapped to the 
device

○



communicating with devices through registers

data-in register is read by the host to get input 
from the device.

data-out register is written by the host to send 
output.

status register has bits read by the host to 
ascertain the status of the device, such as idle, 
ready for input, busy, error, transaction 
complete, etc.

control register has bits written by the host to 
issue commands or to change settings of the 
device such as parity checking, word length, or 
full- versus half-duplex operation.

Device I/O Port Locations on PCs (partial)



x86 I/O instructions
static inline uint8_t

inb(uint16_t port){

   uint8_t data;

   asm volatile("inb %w1, %b0" : "=a"(data) : "Nd"(port));

   return data;

}

static inline void

outb(uint16_t port, uint8_t data){

   asm volatile("outb %b0, %w1" : : "a"(data), "Nd"(port));

}

static inline void

insw(uint16_t port, void *addr, size_t cnt){

   asm volatile("rep insw" : "+D"(addr), "+c"(cnt) : "d"(port) : "memory");

}

https://man7.org/linux/man-pages/man2/outb.2.html 

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf 

https://man7.org/linux/man-pages/man2/outb.2.html
https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf


Example LPT1

Simple hardware has three control registers:



Writing a byte to parallel port
/* https : // wiki.osdev.org/Parallel_port */

void sendbyte(uint8_t byte) {

   /* Wait until BSY bit is 1. */

   while ((inb(0x379) & 0x80) == 0)

       delay();

   /* Put the byte we wish to send on pins D7-0. */

   outb(0x378, byte);

   /* Pulse STR (strobe) line to inform the printer

    * that a byte is available */

   uint8_t ctrlval = inb(0x37a);

   outb(0x37a, ctrlval | 0x01);

   delay();

   outb(0x37a, ctrlval);

}

Parallel port - OSDev Wiki 
https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.
pdf 

https://wiki.osdev.org/Parallel_port
https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf
https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf


IDE disk driver
void IDE_ReadSector(int disk, int off, void *buf){

   outb(0x1F6, disk == 0 ? 0xE0 : 0xF0); // Select Drive

   IDEWait();

   outb(0x1F2, 1);         // Read length (1 sector = 512 B)

   outb(0x1F3, off);       // LBA(linear block address) low

   outb(0x1F4, off >> 8);  // LBA mid

   outb(0x1F5, off >> 16); // LBA high

   outb(0x1F7, 0x20);      // Read command

   insw(0x1F0, buf, 256);  // Read 256 words

}

void IDEWait() {

   // Discard status 4 times

   inb(0x1F7);   inb(0x1F7);   inb(0x1F7);   inb(0x1F7);

   // Wait for status BUSY flag to clear

   while ((inb(0x1F7) & 0x80) != 0)

       ;

}

https://www.scs.stanford.edu/24wi-cs212/notes/i
o_disks.pdf 

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf
https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf


Summary of I/O instructions

● in/out instructions slow and 
clunky 

○ Instruction format restricts what 
registers you can use 

○ Only allows 2^16 different port 
numbers

○ Per-port access control turns 
out not to be useful (any port 
access allows you to disable all 
interrupts)

●

Alternative use memory mapped I/O

● Devices can achieve same effect with physical 
addresses, e.g.:

volatile int32_t *device_control
= (int32_t *) (0xc0100 + PHYS_BASE);
*device_control = 0x80;
int32_t status = *device_control;

○ OS must map physical to virtual addresses, ensure 
non-cacheable

● Assign physical addresses at boot to avoid conflicts. 
PCI: 

○ Slow/clunky way to access configuration registers on 
device

○ Use that to assign ranges of physical addresses to 
device



Memory Mapped I/O

Memory-mapped I/O 

● Device data and command registers 
mapped to processor address space

○ (or you can say)a certain portion of the 
processor's address space is mapped 
to the device

● communications occur by reading and 
writing directly to/from those memory 
areas.

● suitable for devices which must move 
large quantities of data quickly

○ such as graphics cards.

● This can be used in combination with 
traditional registers:

○ For example, graphics cards still use registers for 
control information such as setting the video mode.

● A potential problem exists, 

○ what if a process is allowed to write 
directly to the address space used by 
a memory-mapped I/O device.

● Note this is NOT the same as DMA



Direct memory access (DMA buffers)

● It is wasteful to tie up the CPU transferring 
data in and out of registers one byte at a time.

○ Instead this work can be off-loaded to a 
special processor, known as the Direct 
Memory Access, DMA, Controller.

● Idea: only use CPU to transfer control 
requests, not data

● Include list of buffer locations in main memory
○ Device reads list and accesses buffers 

through DMA
○ Descriptions sometimes allow for 

scatter/gather I/O



Direct Memory Access

● Used to avoid programmed I/O (one byte at a time) for large data movement 

● Requires DMA controller

● Bypasses CPU to transfer data directly between I/O device and memory 

● OS writes DMA command block into memory 
○ Source and destination addresses

○ Read or write mode

○ Count of bytes

○ Writes location of command block to DMA controller

○ Bus mastering of DMA controller – grabs bus from CPU
■ Cycle stealing from CPU but still much more efficient

○ When done, interrupts to signal completion

● Version that is aware of virtual addresses can be even more efficient - DVMA
○ possible to transfer from one mem to another without main memory chips



Example: Network Interface Card

● Link interface talks to wire/fiber/antenna 
○ Typically does framing, link-layer CRC 

● FIFOs on card provide small amount of buffering 
● Bus interface logic uses DMA to move packets to and from buffers in 

main memory

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf 

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf


Example: IDE disk read w. DMA

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf 

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf


How should driver synchronize with card?

● Device driver provides several entry 
points to kernel

○ Reset, ioctl, output, interrupt, read, 
write, strategy . . .

● How should driver synchronize with 
card?

○ E.g., Need to know when transmit 
buffers free or packets arrive

○ Need to know when disk request 
complete

● Two approach
○ pooling
○ interrupt driven devices

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf 

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf


Polling
Summary:

● Sent a packet? Loop asking card when buffer is free
● Waiting to receive? Keep asking card if it has packet
● Disk I/O? Keep looping until disk ready bit set

Details for each byte of I/O

1. repeatedly read busy bit from status register until 0

2. Host sets read or write bit and if write copies data into 
data-out register

3. Host sets command-ready bit

4. Controller sets busy bit, executes transfer

5. Controller clears busy bit, error bit, command-ready bit when 
transfer done

● Step 1 is busy-wait cycle to wait for 
I/O from device

○ Reasonable if device is fast

○ But inefficient if device slow

○ CPU switches to other tasks?

■ But if miss a cycle data 
overwritten / lost

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf 

https://www.scs.stanford.edu/24wi-cs212/notes/io_disks.pdf


Polling
Disadvantages

● Can’t use CPU for anything else 
while polling 

● Schedule poll in future? 
○ High latency to receive packet or 

process disk block bad for 
response time

Polling can be very fast and efficient when

● both the device and the controller are fast 
● and there is significant data to transfer.

It becomes inefficient,when

● the host must wait a long time in the busy loop for 
the device 

● or frequent checks need to be made for data that is 
infrequently there.

How to be more efficient if status is non-zero 
infrequently?



Interrupt driven devices

● Asks card to interrupt CPU on events
○ Interrupts allow devices to notify the CPU 

■ when they have data to transfer 
■ or when an operation is complete

● This allows the CPU to perform other 
tasks when no I/O transfers need an 
immediate attention.

Interrupt handler runs at high priority

Asks card what happened:

● e.g. for NIC xmit buffer free, new packet

This is what most general-purpose OSes do



Interrupt driven devices

● Asks card to interrupt CPU on events
○ Interrupts allow devices to notify the CPU 

■ when they have data to transfer 
■ or when an operation is complete

● This allows the CPU to perform other 
tasks when no I/O transfers need an 
immediate attention.

CPU Interrupt-request line triggered by I/O device

● Checked(sensed) by processor after each 
instruction

A device's controller raises an interrupt by 
asserting a signal on the interrupt request line.

The CPU catches the interrupt and dispatches the 
interrupt handler. 

● The CPU performs 
○ a state save, 
○ and transfers control to the interrupt handler 

routine at a fixed address in memory.

The interrupt handler clears the interrupt by 
servicing the device. 

● The interrupt handler 
○ determines the cause of the interrupt,
○ performs the necessary processing, 
○ performs a state restore, 
○ and executes a return from interrupt 

instruction to return control to the CPU. 



Illustration of Interrupt-driven I/O cycle

CPU Interrupt-request line triggered by I/O device

● Checked(sensed) by processor after each instruction

A device's controller raises an interrupt by asserting a signal 
on the interrupt request line.

The CPU catches the interrupt and dispatches the interrupt 
handler. 

● The CPU performs 
○ a state save, 
○ and transfers control to the interrupt handler routine at 

a fixed address in memory.

The interrupt handler clears the interrupt by servicing the 
device. 

● The interrupt handler 
○ determines the cause of the interrupt,
○ performs the necessary processing, 
○ performs a state restore, 
○ and executes a return from interrupt instruction to 

return control to the CPU. 



The previous example does not deal with the following Issues in modern 
computing

1. The need to defer interrupt handling during critical processing,
2. The need to determine which interrupt handler to invoke, without having to 

poll all devices to see which one needs attention, and
3. The need for multi-level interrupts, so the system can differentiate between 

high- and low-priority interrupts for proper response.

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/13_IOSystems.html 

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/13_IOSystems.html


Interrupt controller on modern architectures

● two Interrupt-request lines 
○ Maskable to ignore or delay some interrupts

○ Non-maskable for critical error conditions 

● Interrupt vector 
○ holds the addresses of routines prepared to process 

specific interrupts.

■ to dispatch interrupt to correct handler

○ Context switch at start and end

○ Based on priority

○ Some nonmaskable

○ Interrupt chaining if more than one device at same 
interrupt number

Intel Pentium processor event-vector table.



Reminder: Exceptions

● Interrupt mechanism also used for exceptions
○ Terminate process, crash system due to hardware error

● Page fault executes when memory access error

● System call executes via trap to trigger kernel to execute 
request

● Multi-CPU systems can process interrupts concurrently

○ If operating system designed to handle it

● Used for time-sensitive processing, frequent, must be fast



Latency

● Stressing interrupt management because even single-user systems 
manage hundreds or interrupts per second and servers hundreds of 
thousands

● For example, a quiet macOS desktop generated 23,000 interrupts 
over 10 seconds

on linux
$ cat /proc/interrupts



Application I/O 
Interface

● I/O system calls encapsulate device behaviors 
in generic classes

● Device-driver layer hides differences among 
I/O controllers from kernel

● New devices talking already-implemented 
protocols need no extra work

● Each OS has its own I/O subsystem structures 
and device driver frameworks

● Devices vary in many dimensions

○ Character-stream or block

○ Sequential or random-access

○ Synchronous or asynchronous (or both)

○ Sharable or dedicated

○ Speed of operation

○ read-write, read only, or write only



A Kernel I/O Structure



Characteristics of I/O Devices



Characteristics of I/O Devices (Cont.)
● Subtleties of devices handled by device drivers

● Broadly I/O devices can be grouped by the OS into

○ Block I/O

○ Character I/O (Stream)

○ Memory-mapped file access

○ Network sockets

● For direct manipulation of I/O device specific characteristics, usually an escape / 
back door

○ Unix ioctl() call to send arbitrary bits to a device control register and data to device data register

● UNIX and Linux use tuple of “major” and “minor” device numbers to identify type and 
instance of devices (here major 8 and minors 0-4)
% ls –l /dev/sda*



Block and Character Devices

● Block devices include disk drives

○ Commands include read, write, seek 

○ Raw I/O, direct I/O, or file-system access

○ Memory-mapped file access possible

■ File mapped to virtual memory and clusters brought via demand paging

○ DMA

● Character devices include keyboards, mice, serial ports

○ Commands include get(), put()

○ Libraries layered on top allow line editing



Network Devices

● Varying enough from block and character to have own 
interface

● Linux, Unix, Windows and many others include socket 
interface

○ Separates network protocol from network operation

○ Includes select() functionality

● Approaches vary widely (pipes, FIFOs, streams, queues, 
mailboxes)



Clocks and Timers

● Provide current time, elapsed time, timer

● Normal resolution about 1/60 second

● Some systems provide higher-resolution timers

● Programmable interval timer used for timings, periodic 
interrupts

● ioctl() (on UNIX) covers odd aspects of I/O such as 
clocks and timers



Nonblocking and Asynchronous I/O

● Blocking - process suspended until I/O completed

○ Easy to use and understand

○ Insufficient for some needs

● Nonblocking - I/O call returns as much as available

○ User interface, data copy (buffered I/O)

○ Implemented via multi-threading

○ Returns quickly with count of bytes read or written

○ select() to find if data ready then read() 
or write() to transfer

● Asynchronous - process runs while I/O executes

○ Difficult to use

○ I/O subsystem signals process when I/O completed

Two I/O methods: (a) synchronous and (b) 
asynchronous.



Vectored I/O

● Vectored I/O allows one system call to perform multiple I/O 
operations

● For example, Unix readve() accepts a vector of multiple 
buffers to read into or write from

● This scatter-gather method better than multiple individual I/O 
calls

○ Decreases context switching and system call overhead

○ Some versions provide atomicity

■ Avoid for example worry about multiple threads changing data as reads 
/ writes occurring 



Kernel I/O 
Subsystem

● I/O Scheduling

○ Some I/O request ordering via per-device queue

○ Some OSs try fairness

○ Some implement Quality Of Service (i.e. IPQOS)

● Buffering - store data in memory while 
transferring between devices

○ To cope with device speed mismatch

○ To cope with device transfer size mismatch

○ To maintain “copy semantics”

○ Double buffering – two copies of the data

■ Kernel and user

■ Varying sizes

■ Full  / being processed and not-full / being 
used

■ Copy-on-write can be used for efficiency in 
some cases



Kernel I/O 
Subsystem

● Caching - faster device holding copy 
of data
○ Always just a copy

○ Key to performance

○ Sometimes combined with buffering

● Spooling - hold output for a device

○ If device can serve only one request at a 
time 

○ i.e., Printing

● Device reservation - provides 
exclusive access to a device
○ System calls for allocation and 

de-allocation

○ Watch out for deadlock



Device-status Table

When a kernel supports asynchronous I/O, it must be able to keep track
of many I/O requests at the same time.



Common PC and Data-center I/O devices and Interface Speeds



Error Handling

● OS can recover from disk read, device unavailable, transient 
write failures

○ Retry a read or write, for example

○ Some systems more advanced – Solaris FMA, AIX 

■ Track error frequencies, stop using device with increasing frequency of 
retry-able errors

● Most return an error number or code when I/O request fails 

● System error logs hold problem reports



I/O Protection

● User process may accidentally or purposefully attempt to 
disrupt normal operation via illegal I/O instructions

○ All I/O instructions defined to be privileged

○ I/O must be performed via system calls

■ Memory-mapped and I/O port memory locations must be protected too



Use of a System Call to Perform I/O



Kernel Data Structures

● Kernel keeps state info for I/O components, including open file 
tables, network connections, character device state

● Many, many complex data structures to track buffers, memory 
allocation, “dirty” blocks

● Some use object-oriented methods and message passing to 
implement I/O
○ Windows uses message passing

■ Message with I/O information passed from user mode into kernel
■ Message modified as it flows through to device driver and back to 

process
■ Pros / cons?



UNIX I/O Kernel Structure



Power Management

● Not strictly domain of I/O, but much is I/O related

● Computers and devices use electricity, generate heat, frequently 
require cooling

● OSes can help manage and improve use

○ Cloud computing environments move virtual machines between servers

■ Can end up evacuating whole systems and shutting them down

● Mobile computing has power management as first class OS 
aspect



Power Management (Cont.)

● For example, Android implements

○ Component-level power management

■ Understands relationship between components

■ Build device tree representing physical device topology

■ System bus -> I/O subsystem -> {flash, USB storage}

■ Device driver tracks state of device, whether in use

■ Unused component – turn it off

■ All devices in tree branch unused – turn off branch



Power Management (Cont.)

● For example, Android implements (Cont.)
○ Wake locks – like other locks but prevent sleep of device when 

lock is held
○ Power collapse – put a device into very deep sleep

■ Marginal power use
■ Only awake enough to respond to external stimuli (button 

press, incoming call)
● Modern systems use advanced configuration and power interface 

(ACPI) firmware providing code that runs as routines called by kernel 
for device discovery, management, error and power management 



Kernel I/O Subsystem Summary
● In summary, the I/O subsystem coordinates an extensive collection of services that are available to applications 

and to other parts of the kernel

○ Management of the name space for files and devices

○ Access control to files and devices

○ Operation control (for example, a modem cannot seek())

○ File-system space allocation

○ Device allocation

○ Buffering, caching, and spooling

○ I/O scheduling

○ Device-status monitoring, error handling, and failure recovery

○ Device-driver configuration and initialization

○ Power management of I/O devices

● The upper levels of the I/O subsystem access devices via the uniform interface provided by the device drivers



Transforming I/O Requests 
to Hardware Operations

● Consider reading a file from disk 
for a process:

○ Determine device holding file 

○ Translate name to device 
representation

○ Physically read data from disk into 
buffer

○ Make data available to requesting 
process

○ Return control to process



Life Cycle of An I/O Request



STREAMS

● STREAM – a full-duplex communication 
channel between a user-level process and a 
device in Unix System V and beyond

○ defines standard interfaces for char IO within 
kernel

● A STREAM consists of:

○ STREAM head interfaces with the user process

○ driver end interfaces with the device

○ zero or more STREAM modules between them

● Each module contains a read queue and a 
write queue

● Message passing is used to communicate 
between queues

○ Flow control option to indicate available or busy

● Asynchronous internally, synchronous 
where user process communicates with 
stream head



The STREAMS Structure in Unix



Performance

● I/O a major factor in system 
performance:

○ Demands CPU to execute device 
driver, kernel I/O code

○ Context switches due to interrupts

○ Data copying

○ Network traffic especially stressful



Intercomputer Communications



Improving Performance

● Reduce number of context switches

● Reduce data copying

● Reduce interrupts by using large transfers, smart controllers, 
polling

● Use DMA

● Use smarter hardware devices

● Balance CPU, memory, bus, and I/O performance for highest 
throughput

● Move user-mode processes / daemons to kernel threads



Device-Functionality Progression



I/O Performance of Storage (and Network Latency)



Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 12


