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Background

● Code needs to be in memory to execute, but entire program rarely 
used
○ Error code, unusual routines, large data structures

● Entire program code not needed at same time
● Consider ability to execute partially-loaded program

○ Program no longer constrained by limits of physical memory

○ Each program takes less memory while running -> more programs run at the same 
time

■ Increased CPU utilization and throughput with no increase in response time or 
turnaround time

○ Less I/O needed to load or swap programs into memory -> each user program runs 
faster



Virtual memory 
▪ Virtual memory – separation of user logical 

memory from physical memory

• Only part of the program needs to be in 
memory for execution

• Logical address space can therefore be much 
larger than physical address space

• Allows address spaces to be shared by 
several processes

• Allows for more efficient process creation

• More programs running concurrently

• Less I/O needed to load or swap processes



Virtual-address Space

● Usually design logical address space for stack to start 
at Max logical address and grow “down” while heap 
grows “up”
○ Maximizes address space use
○ Unused address space between the two is hole

■ No physical memory needed until heap or 
stack grows to a given new page

● Enables sparse address spaces with holes left for 
growth, dynamically linked libraries, etc.

● System libraries shared via mapping into virtual 
address space

● Shared memory by mapping pages read-write into 
virtual address space

● Pages can be shared during fork(), speeding 
process creation



Shared Library Using Virtual Memory



Virtual memory  (Cont.)

▪ Virtual address space – logical view of how process is stored in 
memory

• Usually start at address 0, contiguous addresses until end of space

• Meanwhile, physical memory organized in page frames

• MMU must map logical to physical

▪ Virtual memory can be implemented via:

• Demand paging 

• Demand segmentation



Paging implementation

▪ Use disk to simulate virtual 
memory > physical 
memory

▪ Virtual memory can be 
implemented via:

• Demand paging 

• Demand segmentation

Disk much, much slower than memory

● Goal: run at memory speed, not disk speed



Demand paging choices

● Could bring entire process into memory at 
load time

● Or bring a page into memory only when it is 
needed
○ Less I/O needed, no unnecessary I/O

○ Less memory needed 

○ Faster response

○ More users

● Similar to paging system with swapping 
● Page is needed ⇒ reference to it

○ invalid reference ⇒ abort

○ not-in-memory ⇒ bring to memory

● Lazy swapper – never swaps a page into 
memory unless page will be needed
○ Swapper that deals with pages is a pager



Paging challenges

Disk much, much slower than memory

➔ Goal: run at memory speed, not disk speed

80/20 rule: 

20% of memory 
gets 80% of 
memory accesses
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Working set model

80/20 rule: 

20% of memory gets 80% of 
memory accesses

Keep the cold 80% on disk

Keep the hot 20% in memory
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Paging challenges
How to resume a process after a fault?

● Need to save state and resume
● Process may have been in the middle of 

an instruction!

What to fetch from disk?

● Just needed page or more?

What to eject?

● How to allocate physical pages amongst 
processes?

● Which of a particular process’s pages to 
keep in memory?
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Valid-Invalid Bit

▪ With each page table entry a valid–invalid bit is 
associated
(v ⇒ in-memory – memory resident, i ⇒ 
not-in-memory)

▪ Initially valid–invalid bit is set to i on all entries

▪ During MMU address translation, if valid–invalid bit 
in page table entry is i ⇒ page fault



Page Table When Some Pages Are Not in Main Memory



Steps in Handling a Page Fault 



Steps in Handling Page Fault

1. If there is a reference to a page, first reference to that page will trap to 
operating system 

• Page fault

2. Operating system looks at another table to decide:
• Invalid reference ⇒ abort

• Just not in memory

3. Find free frame
4. Swap page into frame via scheduled disk operation
5. Reset tables to indicate page now in memory

Set validation bit = v
6. Restart the instruction that caused the page fault



Instruction Restart

● Consider an instruction that could access several different locations
○ Block move

○ Auto increment/decrement location

○ Restart the whole operation?
■ What if source and destination overlap?



Aspects of Demand Paging

▪ Extreme case – start process with no pages in memory
• OS sets instruction pointer to first instruction of process, non-memory-resident -> page fault

• And for every other process pages on first access

• Pure demand paging

▪ Actually, a given instruction could access multiple pages -> multiple page 
faults

• Consider fetch and decode of instruction which adds 2 numbers from memory and stores 
result back to memory

• Pain decreased because of locality of reference

▪ Hardware support needed for demand paging
• Page table with valid / invalid bit

• Secondary memory (swap device with swap space)

• Instruction restart



Restarting instructions

● Hardware must allow resuming after a 
fault

● Hardware provides kernel with information 
about page fault

○ Faulting virtual address
■ %cr2 reg on x86

○ Address of instruction that caused fault
○ Was the access a read or write? 
○ Was it an instruction fetch?
○ Was it caused by user access to 

kernel-only memory?

● Observation: Idempotent instructions are 
easy to restart

○ E.g., simple load or store instruction can 
be restarted

○ Just re-execute any instruction that only 
accesses one address

● Complex instructions must be re-started, 
too

○ E.g., x86 move string instructions
○ Specify src, dst, count in %esi, %edi, %ecx 

registers
○ On fault, registers adjusted to resume 

where move left off
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Free-Frame List
▪ When a page fault occurs, the operating system must bring the desired page 

from secondary storage into main memory. 
▪ Most operating systems maintain a  free-frame list -- a pool of free frames for 

satisfying such requests.

▪ Operating system typically allocate free frames using a technique known as 
zero-fill-on-demand 

○ the content of the frames zeroed-out before being allocated.

▪ When a system starts up, all available memory is placed on the free-frame list. 



Stages in Demand Paging – Worse Case

1. Trap to the operating system

2. Save the user registers and process state

3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of 
the page on the disk

5. Issue a read from the disk to a free frame:

a) Wait in a queue for this device until the read request is serviced

b) Wait for the device seek and/or latency time

c) Begin the transfer of the page to a free frame



Stages in Demand Paging  (Cont.)

6.   While waiting, allocate the CPU to some other user

7.   Receive an interrupt from the disk I/O subsystem (I/O   completed)

8.   Save the registers and process state for the other user

9.   Determine that the interrupt was from the disk

10.   Correct the page table and other tables to show page is now in memory

11.   Wait for the CPU to be allocated to this process again

12.   Restore the user registers, process state, and new page table, and then  
        resume the interrupted instruction



Performance of Demand Paging

▪ Three major activities
• Service the interrupt – careful coding means just several hundred instructions needed

• Read the page – lots of time

• Restart the process – again just a small amount of time

▪ Page Fault Rate 0 ≤ p ≤ 1
• if p = 0 no page faults 

• if p = 1, every reference is a fault

▪ Effective Access Time (EAT)
      EAT = (1 – p) x memory access

                       + p (page fault overhead
                 + swap page out
                 + swap page in )



Demand Paging Example
▪ Memory access time = 200 nanoseconds
▪ Average page-fault service time = 8 milliseconds
▪ EAT = (1 – p) x 200 + p (8 milliseconds) 

        = (1 – p  x 200 + p x 8,000,000 
              = 200 + p x 7,999,800
▪ If one access out of 1,000 causes a page fault, then
         EAT = 8.2 microseconds. 
      This is a slowdown by a factor of 40!!
▪ If want performance degradation < 10 percent

• 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

• p < .0000025

• < one page fault in every 400,000 memory accesses



Demand Paging Optimizations
● Swap space I/O faster than file system I/O even if on the same device

○ Swap allocated in larger chunks, less management needed than file system
● Copy entire process image to swap space at process load time

○ Then page in and out of swap space
○ Used in older BSD Unix

● Demand page in from program binary on disk, but discard rather than paging out 
when freeing frame
○ Used in Solaris and current BSD
○ Still need to write to swap space

■ Pages not associated with a file (like stack and heap) – anonymous 
memory

■ Pages modified in memory but not yet written back to the file system
● Mobile systems

○ Typically don’t support swapping
○ Instead, demand page from file system and reclaim read-only pages (such as 

code)



Copy-on-Write
● Copy-on-Write (COW) allows both parent and child processes to initially share 

the same pages in memory
○ If either process modifies a shared page, only then is the page copied

● COW allows more efficient process creation as only modified pages are copied
● In general, free pages are allocated from a pool of zero-fill-on-demand pages

○ Pool should always have free frames for fast demand page execution
■ Don’t want to have to free a frame as well as other processing on page 

fault
○ Why zero-out a page before allocating it?

● vfork() variation on fork() system call has parent suspend and child using 
copy-on-write address space of parent
○ Designed to have child call exec()
○ Very efficient



Before Process 1 Modifies 
Page C

Copy-on-Write: After 
Process 1 Modifies Page 

C



What Happens if 
There is no Free 

Frame?

▪ Used up by process pages

▪ Also in demand from the kernel, 
I/O buffers, etc

▪ How much to allocate to each?

▪ Page replacement – find some 
page in memory, but not really in 
use, page it out

• Algorithm – terminate? swap out? 
replace the page?

• Performance – want an algorithm 
which will result in minimum number 
of page faults

▪ Same page may be brought into 
memory several times



Page Replacement

▪ Prevent over-allocation of memory by modifying page-fault service 
routine to include page replacement

▪ Use modify (dirty) bit to reduce overhead of page transfers – only 
modified pages are written to disk

▪ Page replacement completes separation between logical memory and 
physical memory – large virtual memory can be provided on a smaller 
physical memory



Need For Page Replacement



Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
   -  If there is a free frame, use it
   -  If there is no free frame, use a page replacement algorithm to 
select a victim frame
   -  Write victim frame to disk if dirty

3. Bring  the desired page into the (newly) free frame; update the page 
and frame tables

4. Continue the process by restarting the instruction that caused the trap
 
Note now potentially 2 page transfers for page fault – increasing EAT



Page Replacement



Page and Frame 
Replacement Algorithms

▪ Frame-allocation algorithm 
determines 

• How many frames to give each 
process

• Which frames to replace

▪ Page-replacement algorithm
• Want lowest page-fault rate on both 

first access and re-access

▪ Evaluate algorithm 
• by running it on a particular string 

of memory references (reference 
string) 

• and computing the number of 
page faults on that string



Graph of Page Faults Versus the Number of Frames



First-In-First-Out (FIFO) Algorithm

● Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
● 3 frames (3 pages can be in memory at a time per process)

● How to track ages of pages?
○ Just use a FIFO queue

● Number of faults?



First-In-First-Out (FIFO) Algorithm

15 page faults

● Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
○ 3 physical pages: 9 page faults

○ Adding more frames can cause more page faults!
■ Belady’s Anomaly
■ 4 physical pages: 10 page faults



FIFO Illustrating Belady’s Anomaly

More frames (physical memory) doesn’t always mean fewer faults



Optimal Page Replacement

● Replace page that will not be used for longest period of time

○ 9 is optimal for the example

● How do you know this?

○ Can’t read the future

● Used for measuring how well your algorithm performs



Least Recently Used (LRU) Algorithm

▪ Use past knowledge rather than future
▪ Replace page that has not been used in the most amount of time
▪ Associate time of last use with each page

▪ 12 faults – better than FIFO but worse than OPT
▪ Generally good algorithm and frequently used
▪ But how to implement?



LRU Algorithm (Cont.)
● Counter implementation

○ Every page entry has a counter; every time page is referenced through this entry, copy 
the clock into the counter

○ When a page needs to be changed, look at the counters to find smallest value

■ Search through table needed

● Stack implementation

○ Keep a stack of page numbers in a double linked list form:

○ Page referenced:

■ move it to the top
■ requires 6 pointers to be changed

○ But each update more expensive

○ No search for replacement



LRU Algorithm (Cont.)
▪ LRU and OPT are cases of stack algorithms that don’t have Belady’s 

Anomaly
▪ Use Of A Stack to Record Most Recent Page References

very expensive!
● approximate LRU



LRU Approximation Algorithms

● LRU needs special hardware and still slow

● Reference (accessed) bit
○ With each page associate a bit, initially = 0

○ When page is referenced bit set to 1

○ Replace any with reference bit = 0 (if one exists)

■ We do not know the order, however



LRU Approximation: Clock algorithm
● Second-chance replacement 

algorithm (clock algorithm)
○ Generally FIFO, plus hardware-provided 

reference bit

○ Clock replacement

○ If page to be replaced has 

■ Reference bit = 0 -> replace it
■ reference bit = 1 then:

● set reference bit 0, leave page 
in memory

● skip to next page, subject to 
same rules

for linux implementation see 
https://www.kernel.org/doc/gorman/html/understand/understand013.html 
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Clock algorithm: bit = 1, skip
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Clock algorithm: bit=0, eviction
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Large memory may be a problem

● Most pages referenced in long interval

Add a second clock hand

● Two hands move in lockstep
● Leading hand clears A bits
● Trailing hand evicts pages with A=0
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Can also take advantage of hardware Dirty bit

● (0, 0)Unaccessed, Clean
● (0, 1)Unaccessed, Dirty
● (1, 0)Accessed, Clean
● (1, 1)Accessed, Dirty
● Consider clean pages for eviction before dirty

Or use n-bit accessed count instead just A bit 

● On sweep: count = (A << (n − 1)) | (count >> 1) 
● Evict page with lowest count
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Other Counting Algorithms
▪ Keep a counter of the number of references that have been made to 

each page
• Not common

▪ Random eviction
• Dirt simple to implement

• Not overly horrible (avoids Belady & pathological cases)

▪ Least Frequently Used (LFU) Algorithm:

•   Replaces page with smallest count

▪ Most Frequently Used (MFU) Algorithm: 

• Based on the argument that the page with the smallest count was probably just 
brought in and has yet to be used

Neither LFU nor MFU used very commonly



Page-Buffering Algorithms

● Keep a pool of free frames, always

○ Then frame available when needed, not found at fault time

○ Read page into free frame and select victim to evict and add to free pool

○ When convenient, evict victim

● Possibly, keep list of modified pages

○ When backing store otherwise idle, write pages there and set to non-dirty

● Possibly, keep free frame contents intact and note what is in them

○ If referenced again before reused, no need to load contents again from disk

○ Generally useful to reduce penalty if wrong victim frame selected  



Applications and Page Replacement

● All of these algorithms have OS guessing about future page access

● Some applications have better knowledge – i.e. databases

● Memory intensive applications can cause double buffering

○ OS keeps copy of page in memory as I/O buffer

○ Application keeps page in memory for its own work

● Operating system can given direct access to the disk, getting out of 
the way of the applications
○ Raw disk mode

● Bypasses buffering, locking, etc.



Allocation of Frames

● Each process needs minimum number of frames

● Example:  IBM 370 – 6 pages to handle SS MOVE instruction:

○ instruction is 6 bytes, might span 2 pages

○ 2 pages to handle from

○ 2 pages to handle to

● Maximum of course is total frames in the system

● Two major allocation schemes

○ fixed allocation

○ priority allocation

● Many variations



Fixed Allocation

▪ Equal allocation – For example, if there are 100 frames (after 
allocating frames for the OS) and 5 processes, give each process 20 
frames

• Keep some as free frame buffer pool

▪ Proportional allocation – Allocate according to the size of process

• Dynamic as degree of multiprogramming, process sizes change



Global vs. Local Allocation
● Global replacement – Global allocation 

doesn’t consider page ownership, process 
selects a replacement frame from the set of 
all frames; one process can take a frame 
from another

○ But then process execution time can vary 
greatly

○ But greater throughput so more common

● Local replacement –Local allocation 
isolates processes (or users),  each process 
selects from only its own set of allocated 
frames

○ More consistent per-process performance

○ But possibly underutilized memory



● A strategy to implement global page-replacement policy 

● All memory requests  are satisfied from the free-frame list,  rather than 
waiting for the list to drop to zero before we begin selecting pages for 
replacement, 

● Page replacement  is triggered when the list falls below a certain 
threshold. 

● This strategy attempts to ensure there is always sufficient free memory 
to satisfy new requests.

Reclaiming Pages



Reclaiming Pages Example 



Non-Uniform Memory Access

▪ So far, we assumed that all memory accessed equally

▪ Many systems are NUMA – speed of access to memory varies

• Consider system boards containing CPUs and memory, interconnected over a 
system bus

▪ NUMA multiprocessing architecture



Non-Uniform Memory Access (Cont.)

● Optimal performance comes from allocating memory “close to” the 
CPU on which the thread is scheduled
○ And modifying the scheduler to schedule the thread on the same system board 

when possible

○ Solved by Solaris by creating lgroups 

■ Structure to track CPU / Memory low latency groups
■ Used my schedule and pager
■ When possible schedule all threads of a process and allocate all memory for 

that process within the lgroup



Thrashing

● If a process does not have 
“enough” pages, the page-fault 
rate is very high
○ Page fault to get page

○ Replace existing frame

○ But quickly need replaced frame 
back

○ This leads to:

■ Low CPU utilization
■ Operating system thinking that it 

needs to increase the degree of 
multiprogramming

■ Another process added to the 
system



Thrashing

▪ Thrashing.  A process is busy swapping 
pages in and out ▪ Why does demand paging work?

 

       Locality model
• Process migrates from one locality to another

• Localities may overlap

▪ Reasons for thrashing?
 

       Σ size of locality > total memory 
size

▪ Limit effects by using local or priority 
page replacement



Reasons for thrashing

Access pattern has no temporal locality (past ̸= future)
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Reasons for thrashing

Hot memory does not fit in physical memory
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Reasons for thrashing

Each process fits individually, but too many 
for system

- At least this case is possible to address
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Dealing with thrashing 
Approach 1-working set model

Thrashing viewed from a caching perspective: 

▪ given locality of reference, 

▪ how big a cache does the process 
need?

Or: how much memory does the process need 
in order to make reasonable progress?

▪ its working set?

Only run processes whose memory 
requirements can be satisfied

Approach 2: page fault frequency

Thrashing viewed as poor ratio of fetch to 
work

● PFF = page faults / instructions 
executed

● If PFF rises above threshold, 
○ process needs more memory.
○ Not enough memory on the system? 

Swap out.
● If PFF sinks below threshold, 

○ memory can be taken away
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Working Sets and Page Fault Rates

▪ Direct relationship between working set of a process and its page-fault rate

▪ Working set changes over time

▪ Peaks and valleys over time



Working-Set Size

▪ D-demand
• if D > m ⇒ Thrashing

• Policy if D > m, 

• then suspend or swap out one of the processes 



working set size vs time

▪ Δ ≡ working-set window ≡ a fixed number 
of page references 

• Example:  10,000 instructions

▪ WSSi (working set of Process Pi) =  total 
number of pages referenced in the most 
recent Δ (varies in time)

• if Δ too small will not encompass entire 
locality

• if Δ too large will encompass several 
localities

• if Δ = ∞ ⇒ will encompass entire program

▪ D = Σ WSSi ≡ total demand frames 

• Approximation of locality

Working set changes across phases 

● Baloons during phase transitions
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Calculating Working-Set Size

Working set: all pages that process will access in next T time
• Can’t calculate without predicting future

Approximate by assuming past predicts future
• working set ≈ pages accessed in last T time
• Keep idle time for each page

Periodically scan all resident pages in system
• A bit set? Clear it and clear the page’s idle time
• A bit clear? Add CPU consumed since last scan to idle time
• Working set is pages with idle time < T



Keeping Track of the Working Set

▪ Approximate with interval timer + a reference bit

▪ Example: Δ = 10,000

• Timer interrupts after every 5000 time units

• Keep in memory 2 bits for each page

• Whenever a timer interrupts copy and sets the values of all reference bits to 0

• If one of the bits in memory = 1 ⇒ page in working set

▪ Why is this not completely accurate?

▪ Improvement = 10 bits and interrupt every 1000 time units



Approach 2:Page-Fault Frequency

▪ More direct approach than WSS

▪ Establish “acceptable” page-fault frequency (PFF) rate and use 
local replacement policy

• If actual rate too low, process loses frame

• If actual rate too high, process gains frame



Two-level scheduler

Divide processes into active & inactive 

● Active – means working set resident in 
memory

○ lower level scheduler: choose among them 
to run

● Inactive – working set intentionally not loaded

Balance set: union of all active working sets

● Must keep balance set smaller than physical 
memory

Use long-term scheduler

● Moves procs active → inactive until balance 
set small enough

● Periodically allows inactive to become active
● As working set changes, must update balance 

set

 Complications

● How to chose idle time threshold T?
● How to pick processes for active set
● How to count shared memory (e.g., 

libc.so)
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Some complications of paging 
What happens to available memory?

● Some physical memory tied up by kernel VM 
structures

What happens to user/kernel crossings?

● More crossings into kernel
● Pointers in syscall arguments must be checked

○ can’t just kill process if page not present—might 
need to page in

What happens to IPC?

● Must change hardware address space
● Increases TLB misses
● Context switch flushes TLB entirely on old x86 

machines
○ Newer CPUs use more effective strategies 

marking which process an entry is for
○ Some CPUs have a process ID register

■ MIPS tags TLB entries with PID

What if you want a 64-bit virtual address 
space? 

● Recall x86-64 only has 48-bit virtual 
address space

● Hashed page tables
● Guarded page tables

○ Omit intermediary tables with only one 
entry
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User-level 
perspective From system programming



Recall virtual address space of a process
Dynamically allocated memory goes in heap

Addresses between breakpoint and stack all 
invalid
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Early system calls
OS keeps “Breakpoint” – top of heap

● Memory regions between breakpoint & stack fault 
on access

char *brk (const char *addr);

● Set and return new value of breakpoint

char *sbrk (int incr);

● Increment value of the breakpoint & return old 
value

Can implement malloc in terms of sbrk

● But hard to “give back” physical memory to 
system
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Memory mapped files and 
system calls

● Other memory objects between heap and stack

void *mmap (void *addr, size_t len, int prot, int 
flags, int fd, off_t offset)

● Map file specified by fd at virtual address addr
● If addr is NULL, let kernel choose the address

prot – protection of region

● OR of PROT_EXEC, PROT_READ, 
PROT_WRITE, PROT_NONE

flags

● MAP_ANON – anonymous memory (fd should 
be -1)

● MAP_PRIVATE – modifications are private
● MAP_SHARED – modifications seen by 

everyone
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int msync(void *addr, size_t len, int flags);

- Flush changes of mmapped file to backing store

int munmap(void *addr, size_t len);

- Removes memory-mapped object

int mprotect(void *addr, size_t len, int prot);

- Changes protection on pages to bitwise or of some PROT_. . . values

int mincore(void *addr, size_t len, char *vec)

- Returns in vec which pages present

https://www.scs.stanford.edu/24wi-cs212/notes/vm_os.pdf 

https://www.scs.stanford.edu/24wi-cs212/notes/vm_os.pdf


Exposing page faults

struct sigaction {

   union { /* signal handler */

       void (*sa_handler)(int);

       void (*sa_sigaction)

           (int, siginfo_t *, void *);

   };

   sigset_t sa_mask; /* signal mask to apply */

   int sa_flags;

};

int sigaction(int sig, 

const struct sigaction *act,

              struct sigaction *oact);

Can specify function to run on SIGSEGV 

● Unix signal raised on invalid memory 
access

● this allows user-level context switching 
between multiple threads  of control within 
a process.

https://www.scs.stanford.edu/24wi-cs212/notes/vm_os.pdf 
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Example OpenBSD/i386 siginfo
struct sigcontext{

   int sc_gs;   int sc_fs;   int sc_es;   int sc_ds;   int sc_edi;

   int sc_esi;   int sc_ebp;   int sc_ebx;   int sc_edx;   int sc_ecx;

   int sc_eax;   int sc_eip;

   int sc_cs;     /* instruction pointer */

   int sc_eflags; /* condition codes, etc. */

   int sc_esp;

   int sc_ss;      /* stack pointer */

   int sc_onstack; /* sigstack state to restore */

   int sc_mask;    /* signal mask to restore */

   int sc_trapno;

   int sc_err;

}; Linux uses ucontext_t – same idea, just uses 
nested structures that won’t all fit on one slide

https://www.scs.stanford.edu/24wi-cs212/notes/vm_os.pdf 
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VM tricks at user level

Combination of mprotect/sigaction very powerful

- Can use OS VM tricks in user-level programs Virtual memory 
primitives for user programs 

- E.g., fault, unprotect page, return from signal handler

Technique used in object-oriented databases

- Bring in objects on demand

- Keep track of which objects may be dirty

- Manage memory as a cache for much larger object DB

Other interesting applications

- Useful for some garbage collection 
algorithms

- Snapshot processes (copy on write)

https://www.scs.stanford.edu/24wi-cs212/notes/vm_os.pdf 
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Allocating 
Kernel Memory

● Treated differently from user 
memory

● Often allocated from a 
free-memory pool
○ Kernel requests memory for 

structures of varying sizes

○ Some kernel memory needs to be 
contiguous

■ i.e., for device I/O



Buddy System

● Allocates memory from fixed-size segment consisting of 
physically-contiguous pages

● Memory allocated using power-of-2 allocator
○ Satisfies requests in units sized as power of 2

○ Request rounded up to next highest power of 2

○ When smaller allocation needed than is available, current chunk split into two buddies 
of next-lower power of 2

■ Continue until appropriate sized chunk available

● For example, assume 256KB chunk available, kernel requests 21KB
○ Split into AL and AR of 128KB each

■ One further divided into BL and BR of 64KB
● One further into CL and CR of 32KB each – one used to satisfy request

● Advantage – quickly coalesce unused chunks into larger chunk
● Disadvantage - fragmentation



Buddy System Allocator



Slab Allocator

● Alternate strategy

● Slab is one or more physically contiguous pages

● Cache consists of one or more slabs

● Single cache for each unique kernel data structure

○ Each cache filled with objects – instantiations of the data structure

● When cache created, filled with objects marked as free

● When structures stored, objects marked as used

● If slab is full of used objects, next object allocated from empty slab

○ If no empty slabs, new slab allocated

● Benefits include no fragmentation, fast memory request satisfaction



Slab Allocation



Slab Allocator in Linux

▪ For example process descriptor is of type struct task_struct
▪ Approx 1.7KB of memory
▪ New task -> allocate new struct from cache

• Will use existing free struct task_struct

▪ Slab can be in three possible states
1. Full – all used

2. Empty – all free

3. Partial – mix of free and used

▪ Upon request, slab allocator
1. Uses free struct in partial slab

2. If none, takes one from empty slab

3. If no empty slab, create new empty



Slab Allocator in Linux (Cont.)

● Slab started in Solaris, now wide-spread for both kernel mode and 
user memory in various OSes

● Linux  2.2 had SLAB, now has both SLOB and SLUB allocators

○ SLOB for systems with limited memory

■ Simple List of Blocks – maintains 3 list objects for small, medium, large objects

○ SLUB is performance-optimized SLAB removes per-CPU queues, metadata stored in 
page structure



Other 
Considerations

▪ Prepaging 

▪ Page size

▪ TLB reach

▪ Inverted page table

▪ Program structure

▪ I/O interlock and page locking



Prepaging

▪ To reduce the large number of page faults that occurs at process 
startup

▪ Prepage all or some of the pages a process will need, before they are 
referenced

▪ But if prepaged pages are unused, I/O and memory was wasted

▪ Assume s pages are prepaged and α of the pages is used

• Is cost of s * α  save pages faults > or < than the cost of prepaging 
s * (1- α) unnecessary pages?  

• α near zero ⇒ prepaging loses 



Page Size

▪ Sometimes OS designers have a choice
• Especially if running on custom-built CPU

▪ Page size selection must take into consideration:
• Fragmentation

• Page table size 

• Resolution

• I/O overhead

• Number of page faults

• Locality

• TLB size and effectiveness

▪ Always power of 2, usually in the range 212 (4,096 bytes) to 222 (4,194,304 
bytes)

▪ On average, growing over time



TLB Reach 

▪ TLB Reach - The amount of memory accessible from the TLB

▪ TLB Reach = (TLB Size) X (Page Size)

▪ Ideally, the working set of each process is stored in the TLB

• Otherwise there is a high degree of page faults

▪ Increase the Page Size

• This may lead to an increase in fragmentation as not all applications require a large 
page size

▪ Provide Multiple Page Sizes

• This allows applications that require larger page sizes the opportunity to use them 
without an increase in fragmentation



Program Structure

▪ Program structure
• int[128,128] data;

• Each row is stored in one page 

• Program 1 

                for (j = 0; j <128; j++)
                  for (i = 0; i < 128; i++)
                        data[i,j] = 0;

     128 x 128 = 16,384 page faults 

• Program 2 
             for (i = 0; i < 128; i++)

               for (j = 0; j < 128; j++)
                     data[i,j] = 0;

128 page faults



I/O interlock

▪ I/O Interlock – Pages must 
sometimes be locked into 
memory

▪ Consider I/O - Pages that are 
used for copying a file from a 
device must be locked from being 
selected for eviction by a page 
replacement algorithm

▪ Pinning of pages to lock into 
memory



Operating System 
Implementations

▪ Solaris 
▪ Linux



Solaris 

▪ The page scanner thread runs and begins to walk through memory. A two-step 
algorithm is employed:

• A page is marked as unused.
• If still unused after a time interval, the page is viewed as a subject for reclaim

Paging-Related Parameters - Oracle Solaris 
▪ Lotsfree – threshold parameter (amount of free memory) to begin paging
▪ Desfree – threshold parameter to increasing paging
▪ Minfree – threshold parameter to being swapping
▪ Paging is performed by pageout process
▪ Pageout scans pages using modified clock algorithm
▪ Scanrate is the rate at which pages are scanned. This ranges from slowscan 

to fastscan
▪ Pageout is called more frequently depending upon the amount of free memory 

available
▪ Priority paging gives priority to process code pages

https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/tuning/paging-related-parameters.html


Solaris 2 Page Scanner



Linux

Page Tables — The Linux Kernel documentation 
Memory mapping — The Linux Kernel documentation 

Each process( struct task_struct) has a pointer 
(mm_struct→pgd) to its own Page Global Directory (PGD) 
which is a physical page frame. 

pgd, pgd_t, pgdval_t = Page Global Directory 

p4d, p4d_t, p4dval_t = Page Level 4 Directory

pud, pud_t, pudval_t = Page Upper Directory

pmd, pmd_t, pmdval_t = Page Middle Directory

pte, pte_t, pteval_t = Page Table Entry

Each is array of pointers

https://docs.kernel.org/mm/page_tables.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/memory_mapping.html


Linux

Concepts overview — The Linux Kernel documentation 
Memory mapping — The Linux Kernel documentation 
Memory Allocation Guide — The Linux Kernel documentation 

struct mm_struct encompasses all memory areas associated with a 
process.

struct page is used to embed information about all physical pages in 
the system. 

The kernel has a struct page structure for all pages in the system

struct page * alloc_page(unsigned int gfp_mask)

struct vm_area_struct holds information about a contiguous 
virtual memory area. 

A struct vm_area_struct is created at each mmap() call issued 
from user space.

There are also functions for each struct

It implements LRU

There is also multigen_lru

Multi-Gen LRU — The Linux Kernel documentation 

https://www.kernel.org/doc/html/latest/admin-guide/mm/concepts.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/memory_mapping.html
https://docs.kernel.org/core-api/memory-allocation.html
https://docs.kernel.org/admin-guide/mm/multigen_lru.html

