BIL 301 Operating Systems Ammar Daskin Administrivia

BIL 222 vs BIL 301

BIL 222 System Programming

- How userspace apps interact with systems(kernel-space) by mostly using system calls.
- Unix system calls

BIL 301 OS

- Internal structure of OS-kernel-space
- Management of different resources
- And services provided to userspace
- HWs with Linux kernel

Attendance

Weekly in person lectures

- Slides are provided before the lectures
- Some things may not be on the slides or may not be explained fully
 - Take notes in the lecture
- joining the google classroom is mandatory
 - hws, announcements, etc are posted on the classroom!
- Remind me the break-times!

Assignments (Hw)

None of the assignments are graded this semester!

You do not have to do them to pass this course.

4-5 hw:

- Programming assignments (group projects)
 - kernel compile/build
 - writing kernel module
 - copying data from userspace to kernel-space and vice versa
 - Synchronization
 - security/hacking os
 - Coding standards
 - https://www.kernel.org/doc/html/latest/process/coding-style.html
 - or K&R
- Written problems
 - e.g. scheduling algorithms

Grading

30% homework (including programming and written assignments)

40% 1-midterm exam

60% 1-final exam

Discussion

piazza.com

We use only <u>classroom.google.com</u> for this semester.

class code:

- Do not post solutions or any significant part of an assignment.
- Do not post anything not related to the course.
- Ask a question when you would like some help with something
- Post something when you would like to help others with something.

Collaboration and Cheating Policy

- Any kind of plagiarism and cheating are prohibited (Please, refer to the university cheating policy).
- If you benefit from some work of others, list them as references (online references or books)
- Discussing the assignments or projects with your friends is allowed; but, all the submitted work should be yours alone. List your collaborators (if you discuss your homework with your friends) in your assignments.

Textbooks and Course Material

- Operating System Concepts, 10th Edition Abraham Silberschatz, Greg Gagne, Peter B. Galvin, https://www.wiley.com/en-us/Operating+System+Concepts%2C+10th+Edition-p-9781119320913
- Lectures slides are based on the slides
 - [https://www.scs.stanford.edu/24wi-cs212/notes/] (https://www.scs.stanford.edu/24wi-cs212/notes/)
 - https://www.os-book.com/OS10/slide-dir/index.html
 - o and https://linux-kernel-labs.github.io/
 - weekly posted on classroom.google.com before the lecture.

Other resources

- <u>Linux Kernel Documentation</u>
- intel CPU manual
- OS security and more: https://www.ics.uci.edu/~goodrich/teach/cs201P/notes/
- ebook for synchronization https://dl.acm.org/doi/book/10.5555/2385452
 - https://booksite.elsevier.com/9780123973375/
- o kernel source code
- https://linux-kernel-labs.github.io/refs/heads/master/index.html
- Testing Linux: https://linux-test-project.github.io/

Weekly topics

- Chapter 1: Introduction
- Chapter 2: Operating System Structures
- 3. Chapter 3: Processes
- 4. Chapter 4: IPC, Threads & Concurrency
- 5. Chapter 5: CPU Scheduling
- 6. Chapter 5, 6-7: CPU Scheduling-II, Intro to Synchronization Tools & Examples
- (not included in the book) Synchronization II (atomic instructions, memory barriers (e.g., mb, fence, volatile), C11 atomic library (relaxed, acquire, release), lock free programming, cache coherency,)
- 8. Midterm exam
- 9. Synchronization review, Deadlocks
- 10. Chapter 9: Main Memory
- 11. Chapter 10: Virtual Memory
- 12. Chapter 11-12: I/O Systems
- 13. Chapter 12-13-14-15: File-System Interface, Implementation, and Internals
- 14. Protection, Security

Course goals

Introduce you to operating system concepts

- Hard to use a computer without interacting with OS
- Understanding the OS makes you a more effective programmer

Cover important systems concepts in general

- Caching, concurrency, memory management, I/O, protection
- Synchronization and many topics may help you write more efficient user apps

Teach you to deal with(code/compile/build/install) larger software systems

- Programming assignments much larger than many courses
- Compiling linux kernel may take a few hours

Programming assignments

Implement/edit parts of linux kernel

- writing new system call
- adding new module
- security

Writing/testing synchronization tools (userspace)

- memory barriers
- thread libraries

First homework (hw0):

- Download and install linux on virtualbox
- Download source code, and compile it...

None of the assignments are graded this semester!

You do not have to do them to pass this course.

Installing Linux on Windows

Windows:

with WSL

https://learn.microsoft.com/en-us/windows/wsl/install

choose any linux distro that are available in appstore

https://learn.microsoft.com/en-us/windows/wsl/use-custom-distro

GUI

https://learn.microsoft.com/en-us/windows/wsl/tutorials/gui-apps?source=recommendations

windows terminal:

https://learn.microsoft.com/en-us/windows/terminal/install

Using virtual machine

If you have linux or windows machine

You can install new OS through virtual machine (prefered method):

VirtualBox, VMware, Parallels

https://www.geeksforgeeks.org/how-to-install-ubuntu-on-virtualbox/

https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox#1-overview

You can also run linux containers on windows

https://ubuntu.com/tutorials/windows-ubuntu-hyperv-containers#1-overview

macOS

Download linux ARM64 (AArch64) version

https://www.makeuseof.com/how-to-install-virtualbox-apple-silicon-mac/:

For m3 chips

https://wiki.gemu.org/Main_Page

https://www.qemu.org/download/

https://mac.getutm.app/

Linux test

https://linux-test-project.github.io/