Intro to security

Slides are based ON Introduction to Computer Security : Bishop, Matt

https://cs.lmu.edu/~ray/notes/introsecurity/

Many security terms and definitions

Some practical examples

Last lecture: Static sites & dynamic sites

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Introduction

Last lecture: Transmission of data over a network

- Transmission of data over a network
 - LAN, WAN, internet
 - Layered architecture
 - Protocols
 - HTTP, IP, etc
 - IP routing

. .

Port numbers

This week: How to secure data?

Secure data transmission

Secure data storage

Secure data access

etc.

What to protect? Basic security components: (CIA)

Confidentiality

the concealment of information or resources

- You cannot enter some offices in university
- You cannot see information of other students in ubys.medeniyet.edu.tr

Access control mechanisms support confidentiality.

• Example: a cryptographic key: scramble data so only people with the key can read/understand

Integrity

the trustworthiness of data or resources

- data integrity
- origin integrity
 - Authentication: source of data

Integrity mechanisms

- prevention mechanisms
 - Blocking any unauthorized attempts to change the data
 - (
- detection mechanisms.
 - report that the data's integrity is no longer trustworthy

Availability

the ability to use the information or resource desire

Attempts to block availability, called **denial** of service attacks

More examples on confidentiality

Example confidential information

- Medical records?
- Student records?

Threats to security

A threat is a potential violation of security.

• The violation need not actually occur for there to be a threat

The fact that the violation **might occur** means that

• those actions that could cause it to occur must be guarded against (or prepared for)

Attacks: Those actions

Attackers: Those who execute such actions

Many threats fall into 4 main classes

- 1. Disclosure,
 - unauthorized access to information;
- 2. Deception
 - acceptance of false data
- 3. Disruption
 - interruption or prevention of correct operation

4. Usurpation

 unauthorized control of some part of a system

Threats:Snooping

The unauthorized interception of information, is a form of disclosure

It is passive, suggesting simply that some entity is listening to (or reading) communications or browsing through files or system information

Wiretapping, or **passive wiretapping**, is a form of snooping in which a network is monitored

Confidentiality services counter this threat

Threats: Modification or alteration

an unauthorized change of information,

• covers three classes of threat

The goal may be deception

Unlike snooping, modification is active

- man-in-the-middle attack: an intruder reads messages from the sender and sends (possibly modified) versions to the recipient
 - Integrity services counter this threat

Threats: Masquerading or spoofing

an impersonation of one entity by another,

• is a form of both deception and usurpation.

It lures a victim into believing that the entity with which it is communicating is a different entity

Delegation(an allowed form of masquerading): one entity authorizes a second entity to perform functions on its behalf

if a user tries to log into a computer across the Internet but instead reaches another computer that claims to be the desired one,

• the user has been spoofed!

Threats: Repudiation of origin

a false denial that an entity sent (or created) something,

• a form of deception

Threats: Denial of receipt

a false denial that an entity received some information or message,

• a form of deception.

Threats: Delay

a temporary inhibition of a service

- a form of usurpation
- can play a supporting role in deception.

Let's say: delivery of a message or service requires some time t;

• **delay**: an attacker can force the delivery to take more than time t,

If an entity is waiting for an authorization message that is delayed,

- it may query a secondary server for the authorization.
 - The attacker may be unable to masquerade as the primary server,
 - may masquerade as that secondary server and supply incorrect information

Threats: Denial of service

a long-term inhibition of service

- a form of usurpation
- often used with other mechanisms to deceive

denial may occur

- at the source
 - preventing the server from obtaining the resources needed to perform its function
- at the destination
 - blocking the communications from the server
- or along the intermediate path
 - discarding messages from either the client or the server, or both

Availability mechanisms counter this threat.

Denial of service or delay may result from **direct attacks** or from **non-security related** problems

- we view it as an attempt to breach system security
 - it compromises system security,
 - or is part of a sequence of events leading to the compromise of a system,

Security life cycle

Human issues pervade each stage of the cycle and each cycle feeds info back

Example: A major corporation decided to improve its security.

- It hired consultants,
- determined the threats,
- and created a policy.
- From the policy, the consultants derived several specifications that the security mechanisms had to meet.
- They then developed a design that would meet the specifications
- During the implementation phase,
 - the company discovered that employees could connect modems to the telephones without being detected.
 - The design required all incoming connections to go through a firewall
 - The design had to be modified to divide systems into two classes:
 - systems connected to "the outside," which were put outside the firewall;
 - and all other systems, which were put behind the firewall.
 - 0
- The operation and maintenance stage is critical to the life cycle
 - The company discovers that several "trusted" hosts (those allowed to log in without authentication) were physically outside the control of the company.
 - This violates policy!

Operational Issues

Cost-Benefit Analysis

Example: salary info of employees

- If database altered, it is **financial loss!**
 - Requires strongest possible integrity mechanism
- If we distribute copies to branch offices and the salaries are not distributed based on this copies
 - The copies are not as important as the original database since they are not used!
 - No financial loss

Risk Analysis

To determine whether an asset should be protected, and to what level, requires analysis of the potential threats against that asset and the likelihood that they will materialize.

• likely /unlikely attacks

Operational Issues

Laws and Customs

• Laws restrict the availability and use of technology and affect procedural controls.

Example: US has imported restrictions on Huawei

• Any security policy depends on Huawei manufactured device needs to take this account.

Human Issues

- Organizational Problems
- People Problems
 - The heart of any security system is people
 - You can bypass many technological controls by human intervention
 - Many successful break-ins have arisen from the art of **social engineering.**

0

Basic Cryptography

The word cryptography comes from two Greek words meaning

- "secret writing" and
- is the art and science of concealing meaning.

Classical cryptosystems (single-key or symmetric cryptosystems)

cryptosystems that use **the same key** for **encipherment** and **decipherment**.

Transposition Ciphers: rearranges characters, the key is a permutation function

Example: "HELLO, WORLD" ->

HLOOL ELWRD

+

"HLOOLELWRD."

Cesar cipher "HELLO" in alphabet positions 7 4 11 11 14 Choose a shift(key) **k** New code = $(26+c-k) \mod 26$ Example: k=3 10714141 You can also use ASCII codes!

Classical cryptosystems (single-key or symmetric cryptosystems)

Substitution Ciphers

A substitution cipher changes characters in the plaintext to produce the ciphertext.

A
B
C
D
E
F
G
H
I
J
K
L
M

A
A
B
C
D
E
F
G
H
I
J
K
L
M
N

B
B
C
D
E
F
G
H
I
J
K
L
M
N
O

C
C
D
E
F
G
H
I
J
K
L
M
N
O
P

D
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
G
G
H
I
J
K
L
M
N
O
P
Q
R
G
G
H
I
J
K
L
M
N
O
P
Q
R
G
G
H
I
J
K
L
M
N
O
P
Q
R
G
G

- Cesar cipher
- Vigenère Cipher
 - A longer key, uses a tableau

EXAMPLE: The first line of a limerick is enciphered using the key "BENCH," as follows.

Key	В	ENCHBENC	HBENC	HBENCH	BENCHBENCH
Plaintext	А	LIMERICK	PACKS	LAUGHS	ANATOMICAL
Ciphertext	В	PVOLSMPM	WBGXU	SBYTJZ	BRNVVNMPCS

One-Time Pad: if the key as long as the text

Public Key Cryptography

Two keys: encipherment and decipherment keys

Public (encipherment) key is public!

Private (decipherment) **key** is know only to owner!

RSA

c = m^e mod n m = c^d mod n

- φ(n)
 - the number of numbers less than n with no factors in common with n
- Choose e: e < n relatively prime to $\varphi(n)$.
- Find d: ed mod φ(n) = 1

The public key is (e, n)

the private key is d

n = pq, p and q primes

In addition to confidentiality, RSA can provide data and origin authentication.

RSA Example

Let p = 7 and q = 11. Then n = 77 and $\phi(n) = 60$. Alice chooses e = 17,

so her private key is d = 53.

- ed mod φ(n) = 1
 - 17x53 mod 60 = 1

00 (A) and 25 (Z); 26 represents a blank "HELLO WORLD." 07 04 11 11 14 26 22 14 17 11 03. 07 17 mod 77 = 28 $04\ 17\ \text{mod}\ 77 = 16$ $11\ 17\ \text{mod}\ 77 = 44$. . .

03 17 mod 77 = 75

or 28 16 44 44 42 38 22 42 19 44 75.

Cryptographic Checksums

Alice wants to send Bob a message of n bits.

She wants Bob to be able to verify that the message he receives is the same one that was sent.

checksum function: a mathematical function she applies to generate a smaller set of k bits from the original n bits.

This smaller set is called the **checksum** or **message digest**.

When Bob gets the message, he recomputes the checksum and compares it with the one Alice sent.

• If they match, he assumes that the message has not been changed.

Cryptographic Checksums

A cryptographic checksum function(a strong

hash function or a strong one-way function)

h: $\mathbf{A} \rightarrow \mathbf{B}$ is a function:

- For any $x \in A$,
 - h(x) is easy to compute
- For any $y \in B$,
 - it is **computationally infeasible** to find $x \in A$ such that h(x) = y.

- it is **computationally infeasible** to collision:
 - $\circ \quad x, x' \in A,$
 - for $\mathbf{x} \neq \mathbf{x}'$ and $\mathbf{h}(\mathbf{x}) = \mathbf{h}(\mathbf{x}')$.
 - a collision.

Key management

Session and Interchange Keys

A session key is a cryptographic key associated with the communication itself.

An interchange key is a cryptographic key associated with a principal to a communication

- Key exchange
 - Classical Key exchange authentication
 - Kerberos
 - Public-private key exchange
- Key storage
- Key management
- Digital signatures
- And many other issues

Going back!

For communications, we have used http

Https

The private key - this key is controlled by the owner of a website and it's kept private.

The public key - this key is available to everyone who wants to interact with the server in a way that's secure.

https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/

HTTPS uses an **encryption protocol** to encrypt communications.

- The protocol is called **Transport** Layer Security (TLS),
 - formerly it was known as Secure 0 Sockets Layer (SSL).
- HTTPS occurs based upon the transmission of TLS/SSL certificates,
 - which verify that a particular provider is who they say they are.

Open authorization(OAuth)

an open standard for access delegation,

 commonly used as a way for internet users to grant websites or applications access to their information on other websites but without giving them the passwords

Abstract Flow

https://en.wikipedia.org/wiki/OAuth https://oauth.net/2/

OpenId Authenticatication

OpenID Connect enables application and website developers to launch sign-in flows and receive verifiable assertions about users across Web-based, mobile, and JavaScript clients.

OpenID Connect Protocol Suite

Underpinnings

